III-19 Magnetic Moments of $[(\pi h_{9/2})^2]8^+$ States in ²⁰⁶Po and ²⁰⁴Po

N. BRÄUER, A. GOLDMANN, J. HADIJUANA, M. V. HARTROTT, K. NISHIYAMA, D. QUITMANN, D. RIEGEL and W. ZEITZ

Fachbereich Physik, Freie Universität, Berlin, Germany

The g-factors of the $[(\pi h_{9/2})^2]8^+$ states in the even isotopes ²¹⁰Po to ²⁰²Po yield information about nuclear structure and effective single particle moments. Since these states differ in neutron number, the M1 core polarization due to neutrons is measurable. The g-factors of the 8⁺ states in ²¹⁰Po and ²⁰⁸Po have been determined by Yamazaki *et al.*.^{1,2)} We report measurements of the corresponding gfactors in ²⁰⁶Po ($T_{1/2} = 212$ ns) and ²⁰⁴Po($T_{1/2} =$ 140 ns) following the reactions ²⁰⁴Pb(α , 2n) and ²⁰⁴Pb(α , 4n), respectively.

A 50 mg/cm² metallic foil of ²⁰⁴Pb was bombarded with 28 MeV (or 48 MeV) a-particles from the Karlsruhe Cyclotron. The time interval between the beam bursts was 90 ns, which is shorter than the mean lives of interest. We therefore performed a spin rotation experiment with the condition that the repetition time of the beam is equal to about two times the period of the y-intensity modulation. This procedure is very similar to the stroboscopic method with n = 2. Preliminary values for the g-factors are $g(^{206}Po,$ $(8^+) = 0.95 \pm 0.04$ and $g(^{204}$ Po, $8^+) = 1.04 + 0.08$. The result for ²⁰⁶Po still is compatible with the anomalous g-factors (all g = 0.91) of the corresponding states in ²¹⁰Po and ²⁰⁸Po, and of the $h_{9/2}$ state in ²⁰⁹Bi. To discuss the *g*-factors in more detail the accuracy of the measurements has to be improved.

Fig. 1. Time differential spin rotation patterns of the 8^+ states of ²⁰⁶Po (upper part) and ²⁰⁴Po (lower part). The 395 keV γ -rays of ²⁰⁶Po and the 427 keV γ -rays of ²⁰⁴Po were observed in a magnetic field of 15.9 kG.

References

- T. Yamazaki *et al.*: Phys. Rev. Letters 24 (1970) 317.
- S. Nagamiya *et al.*: Nuclear Phys. A159 (1970) 653.