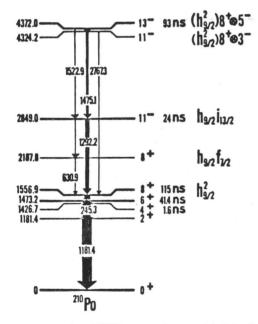
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN

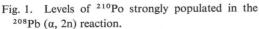
Vol. 34, Supplement, 1973

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR MOMENTS AND NUCLEAR STRUCTURE, 1972

III-23

Magnetic Moment of the Core Excited Isomer of $[(\pi h_{9/2}^2)8^+ \times 5^-(^{208}\text{Pb})]13^-$ in ²¹⁰Po


Y. YAMAZAKI, S. NAGAMIYA, T. NOMURA, K. NAKAI and T. YAMAZAKI


Cyclotron Laboratory, The Institute of Physical and Chemical Research, Wako-shi, Saitama-ken Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo

The isomeric state of 93-nsec half life found in the ${}^{208}\text{Pb}(\alpha, 2n)^{210}\text{Po}$ reaction¹⁾ was interpreted by Blomqvist *et al.*²⁾ as the state arising from $(\pi h_{9/2}^2)8^+$ coupled to the 5⁻ state of the ${}^{208}\text{Pb}$ core (see the level scheme in Fig. 1). In order to test this assignment we measured the magnetic moment of this isomer by the time-differential-spin-rotation method. A metallic ${}^{208}\text{Pb}$ target was bombarded with 33-MeV α particles from the IPCR cyclotron. A time-differential pattern is shown in Fig. 2. The experimental result is

$$g = 0.546 \pm 0.012$$

Assuming the configuration of $[(\pi h_{9/2}^2)8^+ \otimes 5^-(^{208}\text{Pb})]13^-$ we expect

$$g = \frac{8}{13}g(8^+, {}^{210}\text{Po}) + \frac{5}{13}g(5^-, {}^{208}\text{Pb})$$

= 0.565 ± 0.011,

where we used $g(8^+, {}^{210}\text{Po}) = 0.901 \pm 0.013^3)$ and $g(5^-, {}^{208}\text{Pb}) = 0.027 \pm 0.007.^4)$ The present experimental result agrees with this value and is consistent with the interpretation by Blomqvist *et al.*²)

References

- 1) T. Yamazaki: Phys. Rev. C1 (1970) 290.
- 2) J. Blomqvist, D. Fant, K. Wikstrom and I. Bergstrom: Physica Scripta 3 (1971) 9.
- S. Nagamiya, Y. Yamazaki, O. Hashimoto, T. Nomura, K. Nakai and T. Yamazaki, presented at this conference (1972) III-21.
- J. D. Bowman and S. C. Zawislak: Nuclear Phys. A138 (1969) 90.

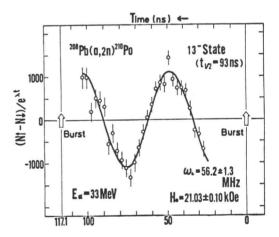


Fig. 2. Time-differential pattern of the normalized difference $R(t) \equiv (N^{\uparrow} - N^{\downarrow})/\exp(-\lambda t)$, where counts N^{\uparrow} and N^{\downarrow} correspond to the external magnetic field up and down, respectively, and λ is the decay constant of the present 13^{-} state.