JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN VOL. 34, SUPPLEMENT, 1973 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR MOMENTS AND NUCLEAR STRUCTURE, 1972

III-24 Lifetime and *q*-Factor of the 1065-keV (15/2⁻) State in ²¹¹Po

T. FAESTERMANN, F. FEILITZSCH, K.E.G. LÖBNER,

C. SIGNORINI, T. YAMAZAKI, C.V.K. BABA[†] and D. B. FOSSAN[†]

Technical University Munich, West Germany [†]University of Munich, West Germany

Preliminary measurements for the lifetime and the g-factor of the 1065-keV state in ²¹¹Po have been obtained. The state was populated by the 208 Pb (α , n) reaction with a 22.5-MeV pulsed a beam. The time spectrum observed for the 1065-keV y ray with a Ge (Li) detector (see Fig. 1) was entirely delayed implying that the associated lifetime is due to the 1065keV state. A mean life of $\tau = 23 \pm 2$ nsec was extracted from the slope measurements of both Ge(Li) and NaI detectors. A g-factor of g = -0.05 ± 0.02 was obtained after appropriate beam bending corrections, from integral measurements with two Ge(Li) detectors and a field of 16.6 kG. The observed lifetime and positive A_2 are consistent with a $15/2^- \rightarrow 9/2^+$ enhanced E3 transition of 18 WU. In addition the energy and lifetime of this level are in agreement with recent calculations for a $15/2^-$ state by J. Blomqvist. Assuming a wave function of $\Psi = \{a(vj_{15/2}) + (1 - a^2)^{1/2}(3 - \bigotimes vg_{9/2})\} \frac{15}{2}$ with the $h_{9/2}^2$ protons coupled to J = 0, the measured g-factor implies an amplitude of a = 0.7 using empirical g-factors and the $vj_{15/2}$ Schmidt value corrected for core polarization. Upon achieving a better understanding of the wave function for this state, the $v_{j_{15/2}}$ g-factor can be extracted from the present result.

