JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN Vol. 34, Supplement, 1973 Proceedings of the International Conference on Nuclear Moments and Nuclear Structure, 1972

**III-26** 

## Anomalous $g_1$ -Factor in <sup>211</sup>At

J. Christiansen, H. Ingwersen, W. Klinger, G. Schatz, W. Witthuhn and W.  $Fitz^{\dagger}$ 

Physikalisches Institut der Universität Erlangen-Nürnberg, Erlangen, Germany †II. Institut für Experimentalphysik der Universität Hamburg, Hamburg, Germany

An excellent case for studying the anomaly of the orbital g-factor  $g_l$  are the magnetic moments of the  $i_{13/2}$  proton states in conjunction with the magnetic moments of the  $h_{9/2}$  proton states in the lead region. This paper deals with the DPAD-measurement of the magnetic moment of the isomeric  $(T_{1/2} = 70 \text{ ns})$  three proton state  $[(h_{9/2})^2 i_{13/2}]_{29/2^+}$  in <sup>211</sup>At. This level was populated by the reaction <sup>209</sup>Bi( $\alpha$ , 2n)<sup>211</sup>At with the 33 MeV  $\alpha$ -particle beam of the Hamburg cyclotron accelerator. Our first result, corrected for Knight-shift and diamagnetism, is  $g_{corr} = +1.03 \pm 0.04$  (see Fig. 1).

In order to extract the  $g_i$ -factor from our measurement, a procedure is followed similar to that applied by Yamazaki et al. to the 8<sup>+</sup> and the 11<sup>-</sup> states in <sup>210</sup>Po.<sup>1)</sup> After decoupling the two h<sub>9/2</sub> protons  $(g(h_{9/2}) = +0.897(16)^{2})$  and including the 3<sup>-</sup> vibrational admixtures<sup>3)</sup> to the 13/2-state, one obtains  $g^{\exp}(i_{13/2}) = +1.21(9)$ . This value, as well as the g-factor of the  $[(h_{9/2})^3]_{21/2}$ - state recently measured in <sup>211</sup>At,<sup>2)</sup> is inserted into the Schmidt-equation into which effective g-factors  $g_l^{eff}$  and  $g_s^{eff}$  are introduced. Since a variation of  $g_s^{eff}$  does not effect the  $g_l^{eff}$ value very much in our case, it is assumed that  $g_{s}^{eff}(h_{9/2}) = g_{s}^{eff}(i_{13/2})$ , and thus one obtains two conditional equations. The solution, shown graphically in Fig. 2, is  $g_l^{eff} = 1.06 \pm 0.07$ . This value is in good agreement with the value  $g_1^{\text{eff}} = 1.09 + 0.02$ of Yamazaki et al..1) However, for further statements a more precise measurement is desirable, which will be carried out shortly.

## References

- 1) T. Yamazaki, T. Nomura, S. Nagamiya and T. Katou: Phys. Rev. Letters 25 (1970) 547.
- 2) H. Ingwersen, W. Klinger, G. Schatz, W. Witthuhn and R. Maschuw, presented at this

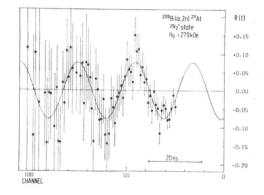



Fig. 1. Spin rotation pattern of the 70 ns isomeric state in <sup>211</sup>At.

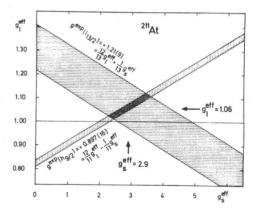



Fig. 2. Evaluation of  $g_l^{eff}$  and  $g_s^{eff}$ , using the magnetic moments of the  $23/2^-$  and the  $29/2^+$  states in <sup>211</sup>At.

conference III-25.

 I. Bergström, B. Fant, C. J. Herrlander, K. Wikström and J. Blomqvist: Physica Scripta 1 (1970) 243.