III-27 Empirical Deduction of Anomalous g₁ Factors of Nucleons

S. NAGAMIYA and T. YAMAZAKI

Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo

Since our publication¹⁾ on the empirical deduction of the anomalous g_l factor of nucleons, several new experimental data of magnetic moments have been reported, and some additional information on the g_l factors has been obtained, which are summarized here.

The g_l and g_s factors in the bare M1 operator for nucleons in nuclei are taken as $g_l^{\text{free}} + \delta g_l$ and $g_s^{\text{free}} + \delta g_s$, respectively. Then the magnetic moment of a single-particle state is expressed as

$$\mu = \mu_{ extsf{Schmidt}} + \Delta \mu_{ extsf{op}} + \Delta \mu_{1 extsf{st}} + \Delta \mu_{ extsf{higher}},$$

where $\mu_{Schmidt}$ is the Schmidt moment, $\Delta\mu_{op}$ is

$$\Delta\mu_{\mathrm{op}} = \delta g_1 \pm \frac{1}{2l+1} (\delta g_s - \delta g_l)$$
 for $j = l \pm 1/2$

and $\Delta\mu_{1st}$ and $\Delta\mu_{higher}$ are the corrections due to the first- and higher-order configuration mixings in nuclear wavefunction, respectively. The first-order correction induces an inward deviation of magnetic moments from the Schmidt lines,²⁾ and the higher-order correction induces displacement from the Schmidt lines in such a way that g factors become closer to Z/A.¹⁾

We have evaluated the magnitudes of $\Delta\mu_{1\text{st}}$ and $\Delta\mu_{\text{higher}}$ to get the remaining part $\Delta\mu_{\text{op}}$. In a given closed-shell region we can determine δg_l and δg_s , when we have more than two experimental values, including those for both spin up (j=l+1/2) and down (j'=l'-1/2). Uncertainties in $\Delta\mu_{1\text{st}}$ cause a large ambiguity in δg_s but not in δg_l . The results are summarized in the Fig. 1. We see from the Fig. 1 that the δg_l values which should be ascribed to the bare M1 operator are

$$\delta g_l^{(\mathrm{proton})} = 0.10 \sim 0.20, \ \delta g_l^{(\mathrm{neutron})} = -0.05 \sim -0.15.$$

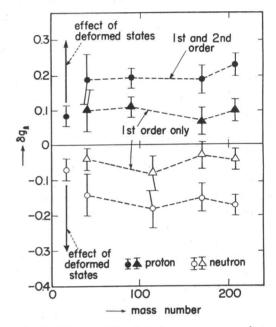


Fig. 1. Values of δg_1 plotted versus mass number.

These values are compatible with the prediction by the meson exchange theories.³⁾

References

- S. Nagamiya and T. Yamazaki: Phys. Rev. C4 (1971) 1961.
- A. Arima and H. Horie: Progr. theor. Phys. 12 (1954) 623.
- H. Miyazawa: Progr. theor. Phys. 6 (1951) 801;
 J. I. Fujita and M. Hirata: Phys. Letters 37B (1971) 237.