JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN VOL. 34, SUPPLEMENT, 1973 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR MOMENTS AND NUCLEAR STRUCTURE, 1972

V.e. Electromagnetic Properties of 2^+ and $2^{+'}$ States of 192,194,196 Pt

R. ROUGNY, M. MEYER-LÉVY, I. BERKES, G. LHERSONNEAU and A. TRONCY

Institut de Physique Nucléaire-Université de Lyon-I, 69621 Villeurbanne, France

(Presented by R. Rougny)

Lifetimes of 2⁺ and 2^{+'} states were determined by delayed coincidences between conversion electrons and γ or X-rays. The lifetimes were calculated by comparison of centroid shifts corresponding to selected cascades. We obtained for ¹⁹⁴Pt: $\tau_{2+} = 50\pm 5$ ps; $\tau_{2+'} = 51\pm 6$ ps, for ¹⁹⁶Pt $\tau_{2+} = 43.6\pm 3.0$ ps; $\tau_{2+'} = 52\pm 5$ ps. Branching ratios were determined with a Ge-Li counter taking into account the sum-up effect. The *B*(M1) and *B*(E2) values were deduced using lifetimes and known M1/E2 mixtures. Nuclear *g*-factors are determined by integral spin-rotation measurements performed in the hyperfine field in an iron alloy.

Experimental values presented in Table I show a simultaneously diminishing trend of $B(E2; 2' \rightarrow 2)/B(E2; 2 \rightarrow 0)$ and $B(E2; 2' \rightarrow 0)/B(E2; 2 \rightarrow 0)$ ratios vs atomic mass. While allowed E2 transition speeds and the equality of g_{2+} and $g_{2+'}$ factors are well described by the microscopic analysis of Kumar and Baranger, it fails to explain $B(E2; 2' \rightarrow 0)$ probabilities and magnetic properties. Experimental B(E2) and $g_{2+'}/g_{2+'}$ ratios can be fitted on the basis of the third order anharmonic model of G. Alaga. Theoretical g-factors calculated using the M1 operator of Greiner (Table I) are in good agreement with experimental ones.

Nucleus Quantity		¹⁹² Pt	¹⁹⁴ Pt	¹⁹⁶ Pt
$B(\text{E2: } 2 \rightarrow 0)$	exp	0.440 ± 0.020	0.380 ± 0.016	0.310 ± 0.012
$B(E2; 2' \rightarrow 2)$	exp	0.94 ± 0.10	0.60 ± 0.07	0.310 ± 0.012 0.342 ± 0.034
$10^{3}B(E2; 2' \rightarrow 0)$	exp	$4.7 \pm \ 0.5$	1.5 ± 0.2	$\leq 6 \cdot 10^{-4}$
$10^{3}B(M1; 2' \rightarrow 2)$	exp	0.55 ± 0.15	$\begin{array}{r} 0.17 & + \ 0.06 \\ - \ 0.04 \end{array}$	0.8 ± 0.1
$\frac{B(\text{E2}; 2' \rightarrow 2)}{B(\text{E2}; 2 \rightarrow 0)}$	exp th	$\begin{array}{ccc} 2.14 & \pm \ 0.22 \\ 1.70 \end{array}$	${\begin{array}{cc} 1.58 \\ 1.65 \end{array}} \pm 0.19$	${\begin{array}{c} 1.10 \\ 1.55 \end{array}} \pm 0.11$
$10^{3} \frac{B(\text{E2}; 2' \to 0)}{B(\text{E2}; 2 \to 0)}$	exp th	$egin{array}{ccc} 11&\pm 1\ 11 \end{array}$	$\begin{array}{cc} 4.0 & \pm \ 0.6 \\ 4 \end{array}$	$\leq 2 \cdot 10^{-3}$ < 0.3
g ₂ +	exp th	$^{+0.275}_{-0.298} \pm 0.016$	$^{+0.298}_{-0.294} \pm 0.018$	$^{+0.323}_{-0.290} \pm 0.020$
g _{2+'}	exp th	$^{+0.309}_{-0.298} \pm 0.044$	$^{+0.281}_{-0.294} \pm 0.047$	0.290

Table I.

B(E2) and B(M1) values are in (eb)² and $(\mu_{\rm N})^2$ units respectively.

References

1) R. Béraud et al: Phys. Rev. C1 (1970) 303.

R. ROUGNY, M. MEYER-LEVY, I. BERKES, G. LHERSONNEAU and A. TRONCY

3) G. Alaga: Nuclear Theory Course, Trieste, (1971).

4) W. Greiner: Nuclear. Phys. 80 (1966) 417.

Discussion

376

T. TAMURA (Univ. of Texas): You obtained good agreement between your data and the prediction of Alaga's theory, as far as electromagnetic properties are concerned. I would like to know how the energies compare.

ROUGNY: Yes, the model fits well the positions of experimental levels except for the $0^{+\prime}$ levels which are predicted too low.

²⁾ K. Kumar: Nuclear models (Purdue University, 1970).