JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN VOL. 34, SUPPLEMENT, 1973 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR MOMENTS AND NUCLEAR STRUCTURE, 1972

V-3

Excited Deformation in Odd Mass Indium Isotopes

T. UNE and M. SANO[†]

Department of Physics, Tokyo University of Education, Tokyo †Department of Physics, Osaka University, Osaka

Possibility¹⁾ of quadrupole deformation in the odd mass In isotopes is investigated by a microscopic theory. We use the wave functions projected from an intrinsic wave function, i.e. a Slater determinant. Our model space is composed of 1g7/2, 2d5/2, 2d3/2 and $3s_{1/2}$ levels for particles and a $1g_{9/2}$ level for holes; all the lower *i*-levels are fully occupied. Therefore the surface region on the nuclei is deformable. The proton intrinsic state is the one-particle two-hole state which is formed by exciting a proton from the 1g_{9 2} state to the Nilsson state $1/2^+$ [431]. The $N_{eff} = N - 50 - \alpha$ neutrons occupy the lower Nilsson levels in our model space, where a is introduced in order to take into account the occupation in the higher major shell. We use the Yukawa interaction of strength 50 MeV and range 2.1 fm with a Rosenfeld mixture.

For $N_{\rm eff} = 12$, the dependence on a deformation parameter β for the total kinetic energy and protonneutron (P-N) interaction is shown in Fig. 1; the β -dependence of the latter is attributed mainly to the interaction between the proton in the Nilsson state 1/2⁺ [431] and twelve neutrons. Our results indicate that between $\beta = 0.1$ and $\beta = 0.2$, the fall of P-N interaction energy is almost equal to the gain of kinetic energy. Therefore we can conclude by adding P-P and N-N interactions that the minimum of the energy curve appears at around $\beta = 0.2$. In fact the equilibrium deformation $\beta \approx 0.15$ is obtained from Fig. 1, i.e. P-N interaction and kinetic energy. The excitation energy of this K = 1/2 rotational band is about 500 keV. However, P-N interaction cannot give the negative decoupling parameter,1) but gives the spin sequence $5/2^+$ (lowest), $1/2^+$, $3/2^+$, $7/2^+$ for this rotational band. For $N_{eff} = 14$ and 16 the neutrons occupy the Nilsson states $5/2^+$ [402] and $7/2^+$ [404], and then because of shell effect the β -dependence of P-N interaction energy becomes smaller than that for $N_{\rm eff} = 12$. This means that the states with $N_{\rm eff} \gtrsim 14$ are not favourable to deformation.

As the numerical values of magnetic moment $\mu_{3/2^+}$ for the deformed $3/2^+$ state, 0.96 n.m. at $\beta = 0.1$ and 0.56 n.m. at $\beta = 0.2$ are obtained by using our wave function and $g_s = 1/2 (g_s)_{\text{free}}$. The expectation values of s_z and l_z for proton are respec-

Fig. 1. The β -dependence of kinetic and P-N interaction energies. Absolute values of energies are not shown.

tively -0.24 and 1.23 at $\beta = 0.2$; for neutron the values of $\langle \Sigma s_z \rangle$ and $\langle \Sigma l_z \rangle$ are -0.0032 and 0.52. If $\delta g_l = -0.1\tau_3^{(2)}$ is used, the above numerical values of $\mu_{3/2^+}$ increase by 0.07 n.m. at $\beta = 0.2$ and 0.24 n.m. at $\beta = 0.1$. The calculated values with δg_l are in better agreement with the observed value.³⁾

Our wave function gives -0.63 barn ($\beta = 0.2$) as the value of quadrupole moment for the $3/2^+$ state if we use $\delta e_{eff} = 1.0$.

References

- A. Backlin, B. Fogelberg and S. G. Melmskog: Nuclear Phys. A96 (1967) 539.
- T. Yamazaki, T. Nomura, S. Nagamiya and T. Katou: Phys. Rev. Letters 25 (1970) 547.
- V. R. Pandharipande, K. G. Prasad and R. P. Sharma: Nuclear Phys. A104 (1967) 525.