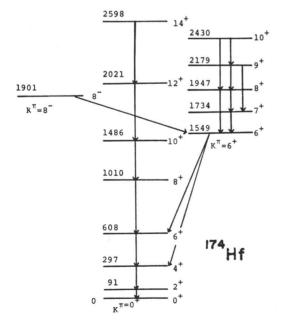
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN

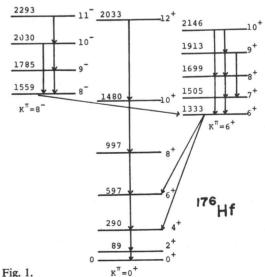
Vol. 34, Supplement, 1973

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR MOMENTS AND NUCLEAR STRUCTURE, 1972

V-8

The g Factors of the Isomeric States in ¹⁷⁴Hf and ¹⁷⁶Hf


H. EJIRI,^{†*} G. B. HAGEMANN[†] and T. HAMMER[†]


*Physics Department, Osaka University, Toyonaka, Osaka [†]The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

High spin isomers of even deformed nuclei are mostly two quasi-particle states (two quasi-protons, two quasi-neutrons) with spin $J \simeq (l_1 \pm 1/2) +$ $(l_2 \mp 1/2) = l_1 + l_2$. Because of the cancellation of the instrinsic spins s_1 and s_2 , the *g* factor of the isomer is approximately expressed in terms of the orbital *g* factors, $g \simeq \alpha^2 g_1^p + (1 - \alpha^2) g_1^n$. Here the $\alpha^2/1 - \alpha^2$ is the two quasi proton to neutron mixing ratio.

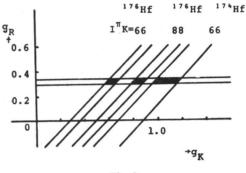
We measured the g factors of the $I^{\pi}K = 6^+6$ and 8^-8 isomers¹) in ¹⁷⁴Hf and ¹⁷⁶Hf in order to study the proton to neutron mixing ratios⁴) $\alpha^2/1 - \alpha^2$ and the orbital g factor. The high lying rotational levels (up to $I = 10 \sim 11$) based on the isomers were well populated by (α , $2n\gamma$) reactions.²) The α beam with $E = 20 \sim 28$ MeV was provided from the super FN tandem accelerator at Risø. The targets were enriched foils and the detector was a 40 cc Ge(Li). The values $(g_{\kappa} - g_l)/Q_0$ were obtained from the cross over (E2) to cascade (M1 + E2) γ branching ratios³) for the rotational levels in the isomer bands. After finishing our experiment, a similar work on the ¹⁷⁶Hf isomers appeared.⁴⁾ Their results of the branching ratios in ¹⁷⁶Hf agree with ours. We measured angular distributions in order to determine the signs of $(g_K - g_R)/Q_0$. The results are given in the Table I and in the Fig. 2. Here the Q_0 for the ground band⁵⁾ was used since the difference between the Q moments of the isomer and ground bands is estimated to be negligible. The g_R is evaluated as $g_R \simeq g_R$ (ground) $+\Delta \mathcal{J}/\mathcal{J} (1 - g_R) - \Delta \mathcal{J}_R/\mathcal{J} \cdot (1 - \alpha^2)$, where \mathcal{J} and $\mathcal{J} + \Delta \mathcal{J}$ are the moments of inertias for the ground and the isomer bands.

The proton components α^2 were obtained as shown in Table I, by comparing the experimental g_K with the calculated g_K for two quasi-protons and the two quasi neutrons. Here the g_K for the one quasi-particle is given by $g_l + (2K)^{-1} \cdot (g_s - g_l)\Sigma(a_{l\Omega-1/2}^2 - a_{l\Omega+1/2}^2)$. The Nilsson levels for the present isomers are $[7/2^+[404]_p5/2^+[402]_p]_{6^+}$, $[5/2^-[512]_n7/2^-[514]_n]_{6^+}$, $[7/2^+[404]_p9/2^-[514]_p]_{8^-}$ and $[7/2^-[514]_n9/2^+[624]_n]_{8^-}$. We note that the present g_K for the two quasi-particles are nearly equal to the values g_l , and are very

1 1<u>5</u>. 1

Contributed Papers

Table I.


	$I^{\pi}K$	$(g_{\rm K}-g_{\rm R})/Q_{\rm O}$	g _K	α ²
¹⁷⁴ Hf	6+6	0.105±0.015	1.08±0.10	0.97±0.12
¹⁷⁶ Hf	6+6	0.041 ± 0.005	0.61±0.03	0.61 ± 0.03
¹⁷⁶ Hf	8-8	0.073 ± 0.003	0.85 ± 0.05	0.82 ± 0.05

insensitive to the values g_s . The g factors⁶) used for the calculation are $g_s = 0.6g_s$ (free), $g_l^p = 1.1$ and $g_l^n = -0.1$. The present values for α^2 are consistent with the expectations from the relative positions of the Fermi surfaces of the protons and the neutrons in the Nilsson level diagram, and with the particle experiments.⁴) Alternatively it suggests the validity of the $g_l^p \simeq 1.1$ used in the calculation.

The authors thank Profs. A. Bohr, M. Sano and S. Yamabe for discussions and encouragement.

References

- H. Ejiri et al.: Proc. Intern. Conf. Radioactivity, Nashiville (1969); J. Borgreen, et al.: Nuclear Phys. A96 (1967) 561; H. Ryde: private communication (1969).
- H. Ejiri, G. B. Hagemann and T. Hammer: *Proc. Intern. Conf. Statistical Property of Nuclei* (1971).
- 3) F. Boem, Goldring, G. B. Hagemann: Phys.

Letters 22 (1966) 627.

- T. L. Khoo, J. C. Waddington *et al.*: Phys. Rev. Letters 28 (1972) 1717.
- H. Ejiri and G. B. Hagemann: Nuclear Phys. A161 (1971) 449.
- T. Yamazaki *et al.*: Phys. Rev. Letters 24 (1970) 315.