JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR MOMENTS AND NUCLEAR STRUCTURE, 1972

V-10

The Magnetic Moments of the $K^{\pi} = 2^{-}$ Band in ¹⁸²W

T. SEO and T. HAYASHI

Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka

The structure and the properties of a rotational band in ¹⁸²W built on the 1289 keV state have been studied through the measurements of γ - γ angular correlations in external magnetic fields. A partial decay scheme of ¹⁸²W is shown in Fig. 1. Natural tantalum in powder and in an alloy of Ta-Fe containing 0.5 at .% Ta both irradiated in the Kyoto University Reactor, were used as sources for the *g*factor measurements of the 2⁻ and 3⁻ states, respectively. The result of the angular correlation measurements for the 179–152 and 264–1189 keV cascades taken with the use of an NaI-Ge goniometer system¹⁾ are

and

$$A_2 = 0.148 \pm 0.010, \quad A_4 = 0.012 \pm 0.016,$$

 $A_2 = -0.165 \pm 0.012, A_4 = 0.018 \pm 0.022$

respectively. From the measurements in an externally applied magnetic field of 15.9 kOe the following precession angles were obtained;

 $\omega_2 \tau_2 = 0.098 \pm 0.013$ for the 2⁻ state and $\omega_3 \tau_3 = 0.207 \pm 0.026$ for the 3⁻ state.

Using the half-life 1.12 ± 0.02 ns for the 2⁻ state,²⁾ the g-factor of this state was obtained as $g_2 =$ 0.85 ± 0.11 . As for the 3⁻ state no reliable lifetime has been reported. We got $g_3\tau_3 = (0.072 \pm 0.009)$. 10^{-9} sec using the internal magnetic field of 598 ± 13 kOe.³⁾ If the 85 keV transition is a pure rotational one, τ_3 is given as $\tau_3^{-1} = (4/3)E^3c^{-3}\hbar^{-4}\mu_N^2$ $\times (g_K - g_R)^2 K^2 (I - K) (I + K) I^{-1} (2I + 1)^{-1} R_{M1}$, where R_{M1} represents the ratio of the total de-excitation rate of the 1374 keV state to the M1 transition rate of the 85 keV y-ray and has a value of 13.0 \pm 1.1 for the present case. Since the g-factor of the rotational state is given as $g(I, K) = g_R + (g_K - g_R)K^2I^{-1}(I+1)^{-1}$, the relation $(g_K - g_R)^2 = (0.146 \pm 0.22)(2g_R + g_K)$ is obtained for the 3⁻ state. For the 2⁻ state $2g_{K} + g_{R} = 2.55 \pm 0.33$ has been derived from the value g_2 described above. These two relations give two pairs of solutions for g_K and g_R : $g_K = 1.03 \pm$ 0.12, $g_R = 0.49 \pm 0.09$ and $g_K = 0.62 \pm 0.06$, $g_R =$

 1.31 ± 0.19 . The former pair is reasonable with respect to the value of g_R .

The g-factor of the 2^- state reported by Bhattacherjee et al.⁴⁾ is $g_2 = 0.52 \pm 0.12$. This is much smaller than the present value. The twoquasiproton configuration of $\{514\dagger-402\dagger\}$ gives $g_K = 0.91$ and 0.96 for $g_s = 5.58$ and 2.62, respectively, showing good agreement with our value. This indicates that the configuration given by Solovev⁶⁾ is better than the one by Neergaard and Vogel⁶⁾ for the 2^- state. The g_R value of the 2^- band is larger than the value $g_R = 0.30$ for the first 2^+ state, but this difference can be explained with the increase of the moment of inertia of the proton part \mathscr{F}_p caused by the rupture of one proton pair corresponding to the difference of the energy spacings of the two bands.

References

- T. Seo, T. Hayashi and A. Aoki: Nuclear Phys. A159 (1970) 494.
- Å. Höglund, S. G. Malmskog, A. Marelius, K. G. Välivaara and J. Kozyczkowski: Nuclear Phys. A169 (1971) 49.
- 3) M. Kontani and J. Itoh: J. Phys. Soc. Japan 22

Contributed Papers

(1967) 345.

- 117.
- S. K. Bhattacherjee, J. D. Bowmann and E. N. Kaufmann: Phys. Letters 26B (1968) 583.
- K. Neergaard and P. Vogel: Nuclear Phys. A145 (1970) 33.
- 5) V. G. Solovev: Atomic Energy Review 3 (1965)