JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN VOL. 34, SUPPLEMENT, 1973 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR MOMENTS AND NUCLEAR STRUCTURE, 1972

V-15

Measurements of Quadrupole Deformation in ^{50,52,54}Cr

C. W. TOWSLEY, D. CLINE and R. N. HOROSHKO

Nuclear Structure Research Laboratory*, University of Rochester, Rochester, New York 14627, USA

As part of a continuing investigation into collective effects in the N = 28 semimagic and adjacent nuclei. we have measured quadrupole moments Q_{2^+} of the first excited states of 50,52,54Cr, using the reorientation effect in Coulomb excitation. We have used the multiple particle-gamma coincidence technique to measure Q_{2^+} in ⁵⁰Cr; the method is described elsewhere.¹⁾ A thin target of ⁵⁰Cr was Coulomb excited by a beam of 62 MeV ³²S ions and the inelastically scattered ³²S nuclei, as well as the recoiling ⁵⁰Cr nuclei were detected in coincidence with de-excitation gamma rays. Use of four particle detectors at forward angles allowed simultaneous observation of eight widely different CM angles. The experimental data were compared with de Boer-Winther Coulomb excitation calculations to derive values of $Q_{2^+} =$ $-30.4 \pm 9.1 \text{ efm}^2$ and $B(E2, 0^+ \rightarrow 2^+) = 910 \pm 50$ e^{2} fm⁴. We have also performed an experiment to measure the relative moments of 50,52,54Cr; the method is described elsewhere.²⁾ A thick target of natural chromium is Coulomb excited by carbon, oxygen, and sulfur beams of various energies below the Coulomb barrier, and the de-excitation gamma rays are observed in a Ge(Li) detector. The relative yields of the three gamma rays are calculated with the

* Supported by the National Science Foundation.

de Boer-Winther code and compared with experiment to determine the relative quadrupole moments. Using the values derived from this experiment and the previously measured Q_{2^+} for ⁵⁰Cr, we determine values of -9 ± 13 and -12 ± 10 efm² for ^{52,54}Cr. respectively. Corresponding $B(E2, 0^+ \rightarrow 2^+)$ values are 595 \pm 33 and 760 \pm 19 e^{2} fm⁴. Using the simplest shell model configuration for each of the three nuclei $[(f_{7/2})^{10}$ for ${}^{50}Cr$, $(f_{7/2})^{12}$ for ${}^{52}Cr$ and $(f_{7/2}^{12}, p_{3/2}^2)$ for ⁵⁴Cr], Goode³⁾ has calculated $Q_{50} = -15 \ e \text{fm}^2$, $Q_{52} = Q_{54} = 0$ for $e_p = 1.5e$ and $e_n = e$. If one particle excitations are allowed into the upper fp shell, the moments for 52,54Cr become -6.6 and $-9.2 \ efm^2$. The one-particle-excited configuration is too large to calculate for ⁵⁰Cr, but results¹⁾ from ⁴⁸Ti indicate that Q_{50} should become $-30 \ efm^2$ in this configuration. These results are in excellent agreement with the experimental data.

References

- P.M.S. Lesser, D. Cline, P. Goode and R. N. Horoshko: Nuclear Phys. (1972) in press.
- H. S. Gertzman, D. Cline, H. E. Gove and P.M.S. Lesser: Nuclear Phys. A151 (1970) 282.
- 3) P. Goode: private communication.