JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN

VOL. 34, SUPPLEMENT, 1973

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR MOMENTS AND NUCLEAR STRUCTURE, 1972

VI-5 Studies on Energy Levels and Electromagnetic Properties in N = 82 Nuclei Using Pseudo LS Coupling Shell Model

MASAO NOMURA

Institute of Physics, College of General Education University of Tokyo, Tokyo

In N = 82 nuclei, there occurs strong configuration mixing, especially, between $0g_{7/2}$ and $1d_{5/2}$ single-particle orbits. Our aim is to study how does it affect energy levels and electromagnetic properties of low-lying states.

Using the seniority scheme of pseudo LS coupling^{1,2,3)} in the configuration $(1d_{5/2} \ 0g_{7/2})^{Z-50}$, shell model calculation is carried out for Z = 51 - 59 nuclei with N = 82. States with seniority $v \leq 4$ and those with $v \leq 3$ are exactly treated for even- and odd-nuclei, respectively. The two-body interaction is assumed to be

Elliott's realistic force
$$-p\sqrt{(2j_1+1)(2j_2+1)}\delta(J,0)$$

 $-q \cdot r_1^2 r_2^2 (C_1^{(2)} \cdot C_2^{(2)})$, (1)

where the last two terms represent the core-polarization effect. To evaluate a many-body matrix element of the interaction (1), we first express the interaction as the sum of central, vector and tensor force defined in pseudo LS space:

interactions (1) =
$$\sum_{k=0}^{2} G^{(k)}$$
. (2)

Next, we make use of new reduction relations⁴⁾ for many-body matrix elements of $G^{(k)}$. Particle-hole interaction⁵⁾ $\overline{G}^{(k)}(k = 0 \sim 2)$ plays an important role in the present formalism. The magnetic moment operator is expressed in the pseudo space as

$$13.0U^{(01)} - 1.71U^{(10)} + 16.2U^{(12)}, \qquad (3)$$

where $U^{(xy)}$ is the unit tensor operator of degree x with respect to S and of degree y with respect to L, and $g_1 = 1$ and $g_5 = 5.58$ are used.

Level spacing between single-particle orbits $1d_{5/2}$ and $0g_{7/2}$ is kept to be observed value 0.963 MeV. We vary coupling constants p and q in the interaction (1), and find that energy spectra for even- and oddnuclei are well reproduced with p = 0.082 and q = 0.0013. Some of results are shown in Fig. 1. The interaction (1) is found to have very small noncentral parts $G^{(1)}$ and $G^{(2)}$. Wave functions of low-lying states of $Z \ge 54$ nuclei are expressed, in a good approximation, in terms of the possible lowest

Fig. 1

seniority. Occupation probability $\langle n \rangle$ of $0g_{7/2}$ in ground states are evaluated to be 2.57, 3.06, 3.77, 4.25, 4.80 and 5.31 for $Z = 53 \sim 58$, respectively, which agrees with results obtained from nuclear reaction.⁶⁾

Using the operator (3), g factors of ground states are evaluated to be 0.4924 in Cs¹³⁷ and 0.4912 in La¹³⁹. These are almost equal to the single-particle g factor $g_{sing} = 0.4911$, while observed g factors are 0.811 in Cs¹³⁷ and 0.794 in La¹³⁹. For *l*-forbidden transition from 5/2 to 7/2 in odd nuclei, retardation is thousand times too large in comparison with observed values.

As another type of residual interaction, we use a central force with a Gaussian radial shape. We find that Rosenfeld force mixture with the force range 0.55 and the depth 35 MeV reproduces energy spectra very well. The *l*-forbidden transition can be fairly explained. However, g factors in odd nuclei are almost the same as g_{sing} .

It is interesting that observed level schemes of Z = 81, 82 and 83 nuclei with N = 126 resemble somewhat to those of Z = 51, 52 and 53 nuclei with N = 82, respectively. It is then suggested that the strong coupling model, *i.e.* pseudo *LS* coupling, defined in the $(1f_{7/2} \ 0h_{9/2})^{Z-82}$ configuration, would be also appropriate to describe N = 126 nuclei for the case $(Z - 82) \gtrsim 3$.

If low-lying states of N = 126 nuclei can be

described by the main configuration $(0h_{9/2})^{Z-82}$ and small configuration mixing, we get the following identity among g-factors of N = 126 nuclei, assuming⁵⁾ that effective magnetic moment is expressed in terms of one- and two-body operators:

$$g(9/2) + g(21/2) = (2g(6) + 8g(8))/5,$$
 (4)

where g(9/2) represents the g factor of the ground state of Bi²⁰⁹ and g(21/2) is that of the $21/2^-$ state of At²¹¹ and g(6) (g(8)) is that of 6⁺ (8⁺) state of Po²¹⁰. Observed g factors,⁷⁾ however, do not seem to satisfy the identity (4), though observed g factors are not accurate enough to get definite conclusion. If really the identity (4) does not hold, we should have to expect very strong configuration mixing also in $(Z - 82) \gtrsim 3$ nuclei with N = 126.

References

- 1) A. Arima, M. Harvey and K. Shimizu: Phys. Letters **30B** (1969) 517.
- K. T. Hecht and A. Adler: Nuclear Phys. A137 (1969) 129.
- W. P. Jones, L. W. Borgman, K. T. Hecht, John Brdwick and W. C. Parkinson: Phys. Rev. C4 (1971) 580.
- 4) M. Nomura: to be published.
- 5) M. Nomura: Phys. Letters 40B (1972) 522.
- B. H. Wildenthal, E. Newman and R. L. Auble: Phys. Rev. C3 (1971) 1199.
- C. V. K. Baba, D. B. Fossan, T. Faestermann, Feilitzsch, P. Kienle and C. Signorini, presented at this conference III.h; H. Ingwersen, W. Klinger, G. Schatz, W. Witthuhn and R. Maschuw, *ibid* III-25.