JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN VOL. 34, SUPPLEMENT, 1973 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR MOMENTS AND NUCLEAR STRUCTURE, 1972

VI-9

Quadrupole Moments of ¹¹C, ¹¹B and ¹²B*

D. KURATH and A. ARIMA[†]

Physics Division, Argonne National Laboratory, Argonne, Illinois, USA [†]Department of Physics, State University of New York, Stony Brook, New York, USA

Using the Cohen Kurath wavefunctions, the quadrupole moments of ¹¹C and ¹¹B are calculated. They are expressed as

$$Q_0(A = 11, t_3) = 2.187(1 + \delta e_p + \delta e_n) + 2t_3(0.807)(1 + \delta e_p - \delta e_n)$$

in units of e fm², where δe_p and δe_n are additional charges of proton and neutron, respectively. The observed values are 4.06 e fm² for ¹¹B and 2.89 e fm² for ¹¹C. The Sternheimer correction is not taken into account in the latter. According to Sternheimer, the correction may increase the value of quadrupole moment of ¹¹C by 3%. We therefore assume two values for ¹¹C; 2.89 and 3.00.

We obtain the following values of δe_p and δe_n ;

- (i) $\delta e_p = 0.16$ and $\delta e_n = 0.43$ when $Q_0({}^{11}C) = 2.89$
- (ii) $\delta e_{\rm p} = 0.14$ and $\delta e_{\rm n} = 0.48$ when $Q_0(^{11}{\rm C}) = 3.00$.

We clearly see that δe_p is smaller than δe_n . This fact is consistent with the theoretical prediction in which one takes into account the quadrupole core polarization. Since δe_p is smaller than δe_n , the iso-vector quadrupole

* This work is supported by U.S. Atomic Energy Commission.

giant resonance should contribute to the effective charges.

We express the wavefunction of the lowest T = 1J = 1 state of mass 12 nuclei as follows:

$$\psi(T=1, J=1, A=12) = \psi_1 + \alpha \psi_2 + \beta \psi_3$$
,

where ψ_t are the Cohen Kurath wavefunctions. Here we allowed the excited states ψ_2 and ψ_3 to mix in ψ_1 , because the magnetic moments of ¹²B and ¹²N are sensitive to small admixtures of them. The magnetic moments limit the values of α and β . (Table I).

We estimate the quadrupole moments of ${}^{12}B$ and ${}^{12}N$ (Table I). The calculated value agrees with the observation.

Table I.

	Ļ	ı(n.m.)	$Q(e \text{ fm}^2)$				
				$\delta e_{\rm p} = 0.16$ $\delta e_{\rm n} = 0.43$		$\delta e_{\mathrm{p}} = 0.14$ $\delta e_{\mathrm{n}} = 0.48$	
α, β		¹² B	^{12}N	¹² B	¹² N	¹² B	¹² N
0	0	0.762	0.611	1.71	0.86	1.70	0.93
.02-	. 05	0.967	0.407	1.60	0.76	1.58	0.82
.04-	. 07	0.950	0.420	1.45	0.66	1.44	0.72
obs.		1.00 + .001	0.457 +.000	1.71		1.71	