JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN VOL. 34, SUPPLEMENT, 1973 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR MOMENTS AND NUCLEAR STRUCTURE, 1972

VI-12 Projected Hartree-Fock Calculations of Spin-Isospin Matrix Elements in A = 17 - 27 Nuclei

KENJI YORO and TSUTOMU UNE[†]

Department of Physics, Osaka University, Osaka [†]Department of Physics, Tokyo University of Education, Tokyo

Matrix elements $\langle \sum \sigma_z^{(l)} \rangle$, $\langle \sum \tau_3^{(l)} \sigma_z^{(l)} \rangle$, $\langle \sum l_z^{(l)} \rangle$ and $\langle \sum \tau_3^{(l)} l_z^{(l)} \rangle$ were obtained separately from measured magnetic moments and β -decay *ft*-values of mirror nuclei in $A \leq 40$ by K. Sugimoto *et al.*,^{1,2)} We calculate these matrix elements in the Projected Hartree-Fock approximation (PHF).

In the PHF method,³⁾ the wave function with definite angular momentum I and its z-component M is given by a following equation:

$$\Psi_{IM\alpha K}(\beta) = C_{I\alpha K} \int d\Omega \mathscr{D}^{I}_{MK}(\Omega) \psi_{\alpha K}(\beta, \Omega) , \quad (1)$$

where Ω represents the Euler angles, $\mathscr{P}_{MK}^{I}(\Omega)$ is the usual representation of the rotation group and $C_{I\alpha K}$ is the normalization factor. The intrinsic wave function $\psi_{\alpha K}(\beta, \Omega)$ with the projected angular momentum K on the nuclear symmetry axis is given by a Slater determinant

$$\psi_{\alpha K}(\beta, \Omega) = | \alpha_1, \alpha_2, \cdots, \alpha_A; \beta \Omega > ,$$
 (2)

where α_t 's represent single-particle states in the intrinsic nuclear field characterized by the deformation parameter β and the Euler angle Ω . The magnetic moment μ is given as the expectation value of the magnetic dipole moment operator μ_z . Using eq. (1), we obtain

In the numerical calculation, we use the energy level splittings in the spherical field ($\beta = 0$) shown in the Table I. The β -dependences of these matrix elements are illustrated in Figs. 1 and 2. The deformation parameter β at which the calculated $\langle \sum \tau \sigma \rangle$ value is closer to measured one is adoped to calculate the values given in Table II. By using such β 's, the fairly good agreements between measured and calculated energy spectra are obtained.

The numerical results indicate the systematical

Table I. Used energy level splittings between spherical single-particle states $s_{1/2}$, $d_{3/2}$ and $d_{5/2}$. (in MeV)

	S _{1/2}	d _{3/2}	d _{5/2}	
A = 17 - 21	-3.27	0.94	-4.14	
A = 23 - 27	-2.78	0.94	-5.26	

Fig. 1

differences between measured and calculated values; Calculated $\langle \Sigma \tau l \rangle$ values are larger than measured ones by about 0.1, while calculated $\langle \Sigma \tau \sigma \rangle$ values are smaller by 20% at most. For $\langle \Sigma \tau \sigma \rangle$ matrix elements,

Contributed Papers

		Experimental values*)	Pure <i>j–j</i> coupling shell model	Projected Hartree-Foc	k Cal. β
A = 17	$\langle \sigma \rangle$	0.865(4)	1.0	1.0	
	$\langle \tau \sigma \rangle$	0.867(9)	1.0	1.0	
5/2+	$\langle l \rangle$	2.067(2)	2.0	2.0	
	$\langle \tau l \rangle$	2. 54(4)	2.0	2.0	
A = 19	$\langle \sigma \rangle$	0.637(3)	0.2	0.675	
Apr. 11. 188	$\langle \tau \sigma \rangle$	0.745(8)	0.733	0. 825 0.	10
$1/2^{+}$	$\langle l \rangle$	0.181(2)	0.4	0.164	
,	$\langle \tau l \rangle$	1.01(4)	1.467	0.913	
A = 21	$\langle \sigma \rangle$	0. 591(1)	0.6	0.550	
	$\langle \tau \sigma \rangle$	0.457(11)	0.666	0. 463 0.	15
3/2+	$\langle l \rangle$	1.205(1)	1.2	1.224	
	$\langle \tau l \rangle$	0.90(5)	1.333	0.737	
A = 23	$\langle \sigma \rangle$		0.6	0. 581	
	$\langle \tau \sigma \rangle$	0.332(7)		0. 459 0.	20
3/2+	$\langle l \rangle$	n ana a mana a a ana a a	1.2	1.209	
	$\langle \tau l \rangle$			0. 701	
A = 25	$\langle \sigma \rangle$		1.0	0.878	
	$\langle \tau \sigma \rangle$	0. 548(6)	0.619	0. 720 0.	20
5/2+	$\langle l \rangle$		2.0	2.061	
	$\langle \tau l \rangle$		1.238	1.412	
A = 27	$\langle \sigma \rangle$		1.0	0.888	
	$\langle \tau \sigma \rangle$	0.469(6)	1.0	0. 812 0.	30
5/2+	$\langle l \rangle$		2.0	2.056	
	$\langle \tau l \rangle$		2.0	1.805	

Table II. The measured and calculated valued of matrix elements $\langle \Sigma \sigma \rangle$, $\langle \Sigma \tau \sigma \rangle$, $\langle \Sigma l \rangle$ and $\langle \Sigma \tau l \rangle$.

*) The listed values are taken from ref. 2.

a part of the deviation of calculated values from experimental ones is attributed to the renormalization of the magnetic dipole operator and the mesonic exchange effect. The large deviations of $\langle \sum \tau \sigma \rangle$ in A = 23 - 27 nuclei can be caused partly by the softness against the γ -deformation.

References

1) K. Sugimoto: Phys. Rev. 182 (1969) 1051.

- K. Sugimoto *et al.*: "Mirror Moments and Effective g-factors for Nucleons in Nuclei," presented at this conference III-1.
- 3) T. Une: "Deformation and Collective Motions in Light Nuclei (I)," OU-LNS.