JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN

VOL. 34, SUPPLEMENT, 1973

-0.040

0.109

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR MOMENTS AND NUCLEAR STRUCTURE, 1972

VI-14 Isovector δg_l^{mes} Produced by the Hamada-Johnstone Potential*

H. HYUGA and A. ARIMA

Department of Physics, State University of New York at Stony Brook, New York, USA

41Ca

f7/2

The Sachs moment $M_{\pi}^{(1)}$ coming from the central part of the Hamada Johnstone potential can be written as

$$\begin{split} M_{\pi}^{(1)} &= M_{\text{one}\pi}^{(1)} + M_{\text{Ho}}^{(1)} \\ M_{\text{one}\pi}^{(1)} &= \left(\frac{f^2}{3}\right) \left(\frac{m}{\mu}\right) [\tau(1) \times \tau(2)]^{(1)} \left[x_1 \times x_2\right]^{(1)} \\ &\times (\sigma(1)\sigma(2)) Y(x) \\ M_{\text{Ho}}^{(1)} &= \left(\frac{f^2}{3}\right) \left(\frac{m}{\mu}\right) [\tau(1) \times \tau(2)]^{(1)} \left[x_1 \times x_2\right]^{(1)} Y^2(x) \\ &\{4.56 - 2.31(\sigma(1)\sigma(2)) \\ &+ (-8.65 + 8.77(\sigma(1)\sigma(2)) Y(x))\} \end{split}$$

where $M_{Ho}^{(1)}$ is the contribution of one pion exchange and $M_{Ho}^{(1)}$ is the contribution from higher order processes. The value of coupling constant f^2 is 0.08, and *m* and μ stand for nucleon and pion masses, respectively.

The expectation values of $M_{\rm H^o}^{(1)}$ depend strongly on the short range behaviour of relative wave functions of two interacting nucleons. We use the short range correlation functions calculated by Hadjmichael *et al.*¹⁾ Almost the same results are obtained by using a simple cut-off at 0.7 fm.

The results for light nuclei are shown in Table I. In this case the mesonic contribution from $M_{\pi}^{(1)}$ is of iso-vector type.

In the lead region, small differences appear between δg_l^{mes} for protons and those for neutrons because of neutron excess.

The following observations are worthwhile mentioning. (i) δg_l^{mes} has a strong state dependence. (ii) δg_l^{mes} for protons are larger than $|\delta g_l^{\text{mes}}|$ for neutrons. (iii) The mesonic corrections reported in this contribution are sometimes very large and cancel the first order-correction due to the core polarization in single particle states with $j = l + \frac{1}{2}$.²⁾ This fact indicates that some unknown corrections for example second

* This work is supported by U.S. Atomic Energy Commission.

		One π	Higher order	Sum
¹⁵ N	$p_{1/2}^{-1}$	0.114	0.064	0.178
¹⁷ O	d5/2	-0.063	-0.037	-0.100
³⁹ K	$d_{3/2}^{-1}$	0.108	0.059	0.165

Table I. δg_l^{mes} in light nuclei.

Table II. δg_l^{mes} for protons in lead region.

-0.069

	One π	Higher order	Sum
0g	0.117	0.066	0.183
Oh	0.102	0.055	0.157
Oi	0.092	0.045	0.136
1f	0.112	0.055	0.167
1g	0.158	0.045	0.203
2p	0.129	0.055	0.184

Table III. δg_l^{mes} for neutrons in lead region.

	One π	Higher order	Sum
0g	-0.098	-0.046	-0.144
0h	-0.073	-0.036	-0.109
Oi	-0.051	-0.028	-0.089
1f	-0.065	-0.038	-0.103
1g	-0.049	-0.030	-0.079
2p	-0.058	-0.038	-0.096

order corrections³⁾ due to the core polarization should be taken into account.

References

- E. Hadjimichael: private communication and Nuclear Theory Group Progress Report SUNY, Stony Brook (1972).
- A. Arima and L. J. Huang-Lin, presented at this conference VI-8.
- 3) A. Arima, M. Ichimura and K. Shimizu, presented at this conference VI-6.