JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN Vol. 34, Supplement, 1973 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR MOMENTS AND NUCLEAR STRUCTURE, 1972

VI-15 Magnetic Moments of ³H and ³He in the Quark Model

M. ICHIMURA, H. HYUGA and G. E. BROWN

Department of Physics, State University of New York, Stony Brook, New York, USA

We have investigated the magnetic moments of ${}^{3}H$ and ${}^{3}He$ by treating the nucleons N and nucleon resonances N* (1236 MeV) on the same footing. The ground state wave function of the trinucleon system is assumed to be

$$\psi_t = \mathscr{N}[\phi_{\mathsf{s}}(\mathsf{N}^3) + \sum_{\alpha=1}^3 \phi_{\alpha}]$$

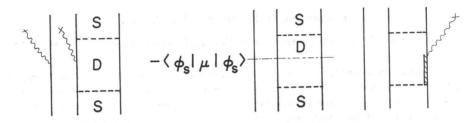
where $\phi_1 = \phi_D(N^3)$, $\phi_2 = \phi(N^2N^*)$ and $\phi_3 = \phi(NN^{*2})$ and \mathscr{N} is the normalization constant. By the approximation used by Riska and Brown,¹⁾ the ϕ'_{α} 's are expressed as

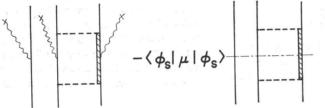
$$\phi_{\alpha} \approx (1/\Delta E_{\alpha}) \sum_{i>j} V^{(\alpha)}(ij) \phi_{s}(N^{3})$$

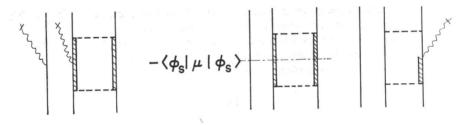
where the $\Delta E'_{\alpha}$ s are the effective energy denominators and $V^{(\alpha)}(ij)$ is the transition potential between the S-state and the α -th states. ΔE_1 is determined so as to give an 8% D-state probability. The quark model is used to determine potentials and magentic-moment operators. For processes involving N*, it is found that strong cancellations take place between effects from wave function renormalization (-0.083 n.m.) and cross terms (0.139 n.m.). Hence, even a sizable N* component does not shift the magnetic moments of ³H and ³He much from their Schmidt values. We also evaluated the two body exchange moments coming from so-called Born term, including the contribution from the transitions between the S-state and the α -th states. They are all additive with the same sign.

Numerical results are shown in the Table I.

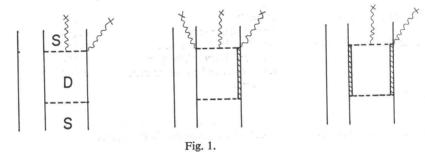
References


- D. O. Riska and G. E. Brown: Phys. Letters 32B (1970) 662.
- M. Chemtob and M. Rho: Nuclear Phys. A163 (1971) 1.


		Isoscalar	Isovector
The unperturbed state	Schmidt	0.440	2, 353
The D and the isobar states	Exchange current ²⁾	0.009	0. 193
	(a) One body spin part	-0.067	-0.067
	(b) One body orbital part	0.038	0.000
	 (c) pionic and pair-excitation current 	0.000	0. 163
Total of calculation Experiment		0.420	2.666
		0.426	2. 553


Table I.

The processes specified in rows (a), (b) and (c) are illustrated in the figures.


(a) and (b)

(c)

540