
Proc. 15th Int. Conf. Physics of Semiconductors, Kyoto, 1980
J. Phys. Soc. Japan 49 (1980) Suppl. A p. 69-76

MANY-BODY EFFECTS IN THE OPTICAL SPECTRA OF SEMICONDUCTORS

Sham

Department of Physics
University of California San Diego

La Jolla, California 92093
U.S.A.

The optical spectrum of many a semiconductor Is
affected by the electron-hole Interaction not only
In the exclton region near the energy gap but also
throughout the continuum, particularly the strength
of the E, and E2 peaks. The local-field effect Is
shown to worsen the discrepancy between the non-
Interactlng approximation and experiment. The elec
tron-hole attraction Is necessary to account for the
experiment. Both first principle calculations using
plane wave and LCAO methods and simple models are
discussed.

I. Introduction

The primary process In the optical absorption In a semiconductor
Is the excitation of an electron Into a conduction band, leaving
behind a hole In a valence band. The analysis of the absorption
spectrum In terms of the electron and hole energies and their wave
functions [1,2], we shall call the non-lnteractlng approximation.
The Coulomb Interaction between electrons modifies the simple ab
sorption process by a non-lnteractlng electron-hole pair. The modi
fication of the one-electron band structure by the many-body effects
shall not concern us here. Our main Interest Is In the additional
processes In the optical absorption caused by the electron Interac
tion .

Phillips [1] has given a very prescient description of the
physics of the many-body effects on the absorption spectrum. The
attraction of the excited electron-hole pair to form excltons In the
gap Is well known. More Important to us Is the excltonlc effect In
the main body of the absorption spectrum, giving rise to what
Phillips called the saddle-point exclton. This continuum exclton
has been studied In the effective mass approximation by Vellcky and
Sak [3] and by Kane [4] and In the contact Interaction approximation
by Vellcky and Sak [3], by Hermanson [5] and by Toyozawa et al. [6].
These works have been critically reviewed by Hanke [?]• Only more
recent work will be discussed here.

Another many-body effect on the optical spectrum Is the local-
field effect. If the Lorentz-Lorenz relation Is applicable. It cer
tainly affects the spectrum greatly [8]. In a semiconductor, while
the electron-hole pair does not act as such a localized dlpole as
assumed In the Lorentz-Lorenz relation, the pair can, nonetheless,
create secondary electric field to further excite other electron-
hole pairs. Recent calculations of this effect will also be
discussed.
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Fig. 1. Polarization diagrams

Fig. (1) defines more precisely the effects discussed above.
Fig. (la) is the polarization by the external field of a non-inter
acting electron-hole pair. Fig. (lb) is an example of the local-
field term. The sum of all such bubbles constitutes the random
phase approximation. Fig. (Ic) and (Id) depict the electron-hole
attraction or the exciton effect. Fig. (le) illustrates the one-
electron energy correction, of no concern here.

II. Optical Spectrum of Non-interacting Electron-hole Pairs

The solid line in Fig. (2) represents the experimental optical
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Fig. 2 Absorption spectrum Im e of silicon deduced from
reflectivity and calculated in a simple model
without interaction, e", and with interaction e
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absorption spectrum of silicon [9]. The three prominent features
are labeled Eq, E]^ and E2- These features are typical of a wide
class of semiconductors of group IV elements and of III-V and II-VI
compounds. According to the analysis In the non-lnteractlng approxi
mation [10], the Eq peak Is due to the electronic transition across
the direct band gap. (See Pig. (3))- The E^ peak Is due to transl-

As

K -2

-6

-10

-2

A  r A X. I

REDUCED WAVE VECTOR

Pig. 3 Silicon band structure, taken from [23]

tlons from the neighborhood of the top valence band to the nearly
parallel lowest conduction band In the (111) direction. I.e., be
tween the nearby parallel and Atq bands. The E2 peak Is due to
transitions In a rather large neighborhood of the X point In the
Brlllouln zone, (100) 2TT/a, between and X^q with bands nearly
parallel In two directions.

The dotted curve In Pig. (2) represents a calculation, with de
tails given In Sec. IV, which takes the above description of the Ep
and E2 peak literally in a simple model. Compared to the measured
spectrum, the strength of the Ep peak Is underestimated and that of
the E2 peak Is overestimated. A proper calculation of the absorp
tion by one-electron transitions In SI [11] certainly Improves the
agreement but the qualitative features of a lower E^ peak and a
higher E2 peak remain In the accurate calculation. This Is also
true, though with varying extent, for other semiconductors. Some
examples are Ge [12,13], GaAs [14,15], InAs, InSb [15]) ZnS, ZnSc
[16,14]. In some of these calculations the electron energies have
been fit to the peak positions. In the pseudopotentlal frame [l4] or
In the k*p framework [15], and yet the strength of the peaks has the
same feature. One exception Is a Pourler sum Interpolation of the
band structure [17]) which reproduces the optical spectrum of Si and
Ge exceptionally well. It appears) however) that the over-all band
structure, and, hence, the momentum matrix elements, are very differ
ent from the other works [18].

The absorption spectrum of diamond [19] Is rather different from
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those of the semiconductors described above. It has a main peak
with some weaker structures on the low energy side of the peak.
Non-interacting approximation with some band structures [20] yields
rather good agreement with experiment [21,22].

111. The Local-field and Excitonic Effects

The sum of all interaction processes which correlates the elec
tron-hole pair illustrated in Pig. (1) will be denoted by the two-
particle Green's function S which satisfies an integral equation [23]

S = S„ + S„1S (1)
o  o

with Sq being the uncorrelated electron-hole pair and 1 consisting
of two parts: 1^ which is the electron-hole attraction, suitably
screened and Ij, which is the bare Coulomb interaction between one
electron-hole pair and another. (See Fig. 4).
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Fig. 4 Integral equation for the two-particle
Green's function, eq. (1)

Ij) alone in eq. (1) will reproduce the random phase approximation,
la is the exchange counterpart of lb, except that the Coulomb inter
action is screened in the former. 1^ produces the excitonic effect
and lb may be regarded as the exchange term to the electron-hole
attraction, which should not be screened [24]. Both points of view
have been adopted, the former being prevalent in many-body papers
and the latter in exciton papers [25].

Close to the Eq peak, i.e., for the electron transition close to
the direct fundamental gap, eq. (1) can be shown to reduce to the
effective mass approximation [24], which adequately accounts for the
bound exciton lines and continuum exciton effect near Eq [26] with
a small exchange correction [25]. The effective mass approximation
is, however, invalid around the E^ or E2 peak which involves a much
larger phase space than the electron-hole pair around Eq which binds
into a Wannier exciton. Eq. (1) has to be solved directly.

In the pseudopotential method, the electron wave function is ex
panded in a series of plane waves and eq. (1) in the RPA, i.e., with
only the lb term in the interaction, is reduced to a matrix equation
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with the elements ranked by the reciprocal lattice vector. The
equation Is thus solved for diamond [22] and silicon [11]. With
the electron-hole attraction, eq. (1) remains an Integral equation,
which Is yet to be solved for a semiconductor.

In the method of linear combination of local orbltals, the elec
tron wave function Is expressed In terms of localized orbltals. Eq.
(1), with the Interaction Including both 1^ and lb. I.e., both the
electron-hole attraction and Its exchange. Is reduced to a matrix
equation. Its Inversion for diamond [27] and silicon [23] leads to
optical spectra Including the excltonlc and local-field effects.

The local-field effect, as produced by the RPA, I.e., taking only
lb In eq. (1), reduces the Intensity of a peak of the optical spec
trum In the non-lnteractlng approximation, more severely on the low
energy side, resulting In the appearance of a smaller peak with Its
position shifted to a higher energy. For SI, since the Eq peak Is
already too low In the non-lnteractlng approximation, the Inclusion
of the local-field effect pushes It further away from the measured
curve, as shown In Pig. (5), calculated In the LCAO representation
[23]. The RPA In the plane wave representation [11] gives quallta-
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Pig. 5 Absorption spectrum of SI, taken .from [23]

tlvely the same modification, although the depression of the Eq peak
Is smaller. The E2 peak which Is too high In the non-lnteractlng
approximation Is lowered too much by the local-field effect In com-
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parlson with 6xp6rlm6nt. In d.la.mond, the main peak is similarly
reduced In strength and shifted to higher energy in both methods of
calculation, though again the change is smaller in the plane wave
method [22] than in the LCAO [27]. The quantitative difference be
tween the two representations may be attributed to that LCAO yields
a more localized wave function for the conduction and valence elec
tron and hence a larger local—field effect than the plane wave repre
sentation.

The excitonic effect affects the optical spectrum in just the op
posite manner. This effect has only been calculated in LCAO [23,27].
Fig. (5) shows that in Si, it increases the intensity of the peak,
particularly so in the low energy side such that the peak appears
shifted to lower energy by about 0.2 eV. Agreement with experiment
is thereby improved. The lifting of the Ep peak is not sufficient
to compensate the lowering due to the local-field effect. One might
venture a guess that the present LCAO calculation yields too small
an Ep peak in the non-interacting approximation in comparison with
the plane wave representation which is larger than the measured E2
peak. If the larger Ep peak is taken as the true non-interacting
result, then the net result of exciton and local-field effects would
reduce it to Just about the measured value. In diamond, the exci
tonic effect raises the main peak to about the experimental value.

IV. A Model Dielectric Function

From the calculations of the excitonic and local-field effects
for Si and diamond, we would like to draw the same conclusion for
other semiconductors. Now a model is discussed which is not only
applicable to the wide class of semiconductors discussed in Sec. II,
but also provides a simple physical picture for the many-body ef
fects on the optical spectrum.

In the non-interacting approximation, the dielectric function as
a function of frequency o) of the exciting field has the form

2  2
0) lA) . \

"eCto+io) = 1 - ^2 ^2 \n((A)+lo) + n(-a)-lo)| (2)
U) 0) ^

where ojp is the plasma frequency and the sum of the two n functions
in the curly brackets is the current response function, rendered
dimensionless, for uncorrelated electron-hole pair excitations. Now
we approximate the interaction I in eq. (1) by a separable form of a
dimensionless coupling constant V times a current vertex function of
the relative momentum of the incoming electron-hole pair and the
same function of the relative momentum of the outgoing electron-hole
pair. Then eq. (1) may be solved to yield the dielectric function
Including the interaction effects:

/  \ n '^p . "p ( n(o)+io) , n(-a)-io) 1G(u+io) = 1 ^ + 2 il-Vn(a)+io) l-VnC-to-io) /
0) 0)

Near E]_ peak, Rell is positive as can be seen by either the
Kramer-Kronlg relation or the Ree plot deduced from reflectivity [9].
In RPA, V is negative and the denominator in eq. (3) reduces the
strength of the non-interacting peak. V is positive for the elec
tron-hole attraction and, hence, the exciton effect raises the Ei
peak. Near E2 peak, Ren is negative [9]. Even though the net V is
positive because the excitonic interaction dominates, the denomina
tor in eq. (3) is larger than unity and, hence, reduces the E2 peak
strength. From the size of Ree and hence Ren, which is larger for
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SI than for Ge and GaAs [9], one can deduce that the many-body cor
rections for and E2 peaks are larger in SI than in Ge and GaAs.

Cardona's model analysis discussed in Sec. II enables us to eval
uate n(a)+io), which consists of two parts. The E^ peak part comes
from the k-p Hamiltonian around L-|^q and L^iy. The E2 peak part comes
from the two plane-wave mixture connected by the reciprocal lattice
vector (220) near the Jones zone surface centered at the X point I28J.
The fraction of the Jones zone surface which contributes is deter
mined by the f sum rule. The dotted curve in Fig. (2) is calculated
in this approximation for Si. The E2 peak, which is grossly over
estimated, can clearly be improved.

With interaction effects included, each part is screened as in eq.
(3). The interaction constants Vy and V2 are estimated from phase
space averages of the statically screened Coulomb interaction. The
dashed curve in Pig. (2) represents the inclusion of the excitonic
effect. The bound exciton line below the E^ edge is smeared by the
r = 0.01 eV broadening. The higher E^ peak is only partly due to
the smearing of the bound exciton line and is mostly due to the con
tinuum exciton effect above the E]^ edge. The spike below the E2
edge shows that F = 0.01 eV is insufficient to smear out the bound
exciton line. (A 0.1 eV broadening will suffice). The intensity
above the E2 edge is reduced and that below the E2 edge is increased,
in accordance with the more precise calculation.

The results of this simple model for Si are qualitatively valid
for the other semiconductors and may be regarded as providing a
simple description of the many-body effects on the optical spectrum
of the semiconductor in general.
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