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The semiempirical approximations to the tight binding elec
tronic band structure in crystals are discussed, and it is
shown that a procedure exists (ORSTB), by which the secular
equation matrix elements are made to coincide with those of
the chemical pseudopotential method. This gives a formal the
oretical basis to many of the practical prescriptions used
until now in successful tight binding calculations. The case
of selenium is considered to exemplify the ORSTB procedure.

I. The Semiempirical Tight Binding: Approaches and Procedures

The tight binding (TB) method has often provided in the past a useful semiem
pirical scheme to compute the electronic band structure of several materials (see,
e.g., [1] and [2]). The semiempirical TB (STB) introduces three main approxima
tions: i) all the three-centre integrals are neglected, ii) The crystal field is
neglected, or, if retained, it is strongly reduced with respect to the computed
one. iii) Both overlap and interaction two-centre integrals are slightly decreased
with respect to the computed ones. The corrective parameters introduced for the
approximation iii), or for both iii) and ii), are determined in such a way that
the bands reproduce some experimental features of the material.

While the approximation i) above has an essentially practical origin, and it
rests on the relative smallness of three- with respect to two-centre integrals,
no physical interpretation has yet been proposed for ii), which still stands only
as a practical prescription. The reason for iii), on the contrary, has been sought
in the fact the TB Bloch sums should not be made with free-atom eigenfunctions,
but rather with atomic-like functions contracted in the direction of the bonds to
account for the crystal environment [1]. This amounts to saying that screened (lo
calized) orbitals [3] must be used to improve the TB accuracy, and that iii) in
troduces in some way the correction required when free-atom orbitals are used in
place of the localized ones. This hint suggests the way to comprehend all the
STB approximations in a unique formulation.

First of all, we consider Bloch sums made with the localized orbitals as they
are obtained in the framework of the chemical pseudopotential (CP) approach [4,5].
The non-hermitian localizing CP hamiltonian (LCPH) can be re-defined, with respect
to the original formulation, so that also open shell atomic constituents can be
taken into account, as it is usual in TB. Moreover, with the LCPH introduced here,
the crystal bands are obtained by solving a secular equation for a hermitian op
erator. Its matrix elements - this is the key point of our argument - become equiv
alent to those obtained in the STB when free-atom orbitals are used, provided
that the requirements i) and ii) above are still met, and iii) is substituted by
the following: iii') overlap integrals onty must be strongly reduced in magnitude,
whilst interaction integrals are retained as they are computed.

The set of prescriptions i), ii) and iii') characterizes the overlap reduced
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STB (ORSTB) method. This procedure achieves three main results. First, the rela
tionship between localization of atomic-like orbitals and STB is clearly stated,
and a short way is suggested to account for localization effects still using free-
atom orbitals. Then, while the standard STB approximations were unrelated and
only of practical origin, ORSTB shows that they, once exactly stated, have a com
mon theoretical origin, and cannot be used separately. Finally, the reason is
understood why STB was so fairly successful, in spite of its quite rough approxi
mations. Conversely, where STB fails (as in reproducing the correct width of some
bands), ORSTB gives results in excellent agreement with other more sophisticated
methods and with experiments (see, e.g., the case of GaSe-type crystals [6]).

II. The Chemical Pseudopotential Revisited

In the crystal we consider, n indicates a generic lattice vector, and s, t' or
s" are the basis sites in the fundamental cell. The standard CP procedure [4,5]_^
considers, for each centre s^, both the free hamiltonian H°(s) and the LCPH, HP(s),
of the atom (or ion) centred at s. Their eigenvalues and eigenvectors are ident
ified by appropriate sets of quantum numbers, indicated by 1° and it;

H°(s)lJ!,°,s> = e°{SL° ,s)\Z° ,t> , (1)
HP(s)lil,s> = e()l,s) |ll,s> . (2)

Of course, for n whatever, H^(s+n) has the same eigenvalues as H^(s), and also
li!,,s> and |il,s+n> differ only in their being centred in different cells. The one-
electron crystal potential is usually the sum of short ranged separate contribu
tions of each centre of the lattice [5,7]. By picking out the free hamiltonian of
a centre (s, for instance), the crystal one-electron hamiltonian becomes

H = H°(s) + V(s'+n) . ^ ̂
In eq.(3), and in the following, I' indicates that n=0 is dropped if s=s' or s=s".

We define the LCPH for the centre s as follows

HP(?) = H°{t) + {V(s'+n)-P(s'+n)HV(s'+n)+V(s)]} , (4)

P(s'+^) = . (5)

Due to the screening effect of P(?'+r[) in eq.(4), HP(?) and H°(s) do not di^ffer
too much, and each |«.,s> may be obtained by perturbation from a given |J!.°,s>. When
the free atom (ion) at s is open shell, both occupied and unoccupied eigenstates
of H°(s) are degenerate by spherical symmetry, and this degenerate manifold corre
sponds to a set of states (the degeneracy is often removed) |z,s>, all of which we
include in our theory, and, for the appropriate s', in the operators of eq.(5).

From each one of the ll!,,s> taken into account above, and for a given It in the
Brillouin zone, a Bloch sum llt,ll,s> is obtained. It is easily verified from eqs.
(2), (3), (4), and (5) that

H|]t,«,,s> = D(]t)j^,j.^j^^|it,J!,',s'> , (6)
D(lt)^.^. _^^ = e(ii,s)6j^^.6^. + IX exp(i^n)a',s'|i[V(s')+V(s+n)]U,s+n> . (7)

Finally, electronic eigenstates and energies for the crystal are obtained by solv
ing the secular equation for the matrix D of eq.(7)

detlD(]t)-EI| =0 . (8)

In eq.(4), J[V(?'+n)+V(s)] replaces the simple V(s'+n) of the standard CP. Due
to this, our matrix D, eq.(7), is hermitian, even if the LCPH of eq.(4) is not.
Moreover, in the standard CP, the sum in eq.(5) is restricted to the occupied or
bitals only. Were this requirement satisfied, eq.(4) would still define an Adams-
Gilbert hamiltonian [5]. If, however, in eq.(5) P(s'+n) defines a manifold inclus
ive also of empty states, the screening due to P admitedly increases, and |X.,s>
tends to 1 )1°,?> (they coincide in the limit a complete set of functions, when
P=l), but conversely also the dimension of the secular equation (8) increases,
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and the accuracy of the crystal eigenfunctions is, at least in part, recovered.

III. The Overlap Reduced Semi empirical Tight Binding

In the standard TB, the Bloch sum are made with the free orbitals of eq.(l).
As usual [6], the matrix elements of H are obtained by picking out in eq.(3) first
H°(s) and then H°(s'+n), by averaging the two results (hermiticity is thus pre
served, in spite of any approximation), and by neglecting three-centre integrals:

exp(ilc-n)<«,°,sli,°',s'+n> , (10)

's' ~ '^ss' Is" ,n I I
= Ij J[V(s)+V(s'+n)] ir',s'+n> . (12)

Equation (12) already contains i) of ORSTB. The crystal eigenvalues are obtained
by solving the secular equation detlH^^(l<)-ES(]<)| =0, or equivalently

detlS(l<)-JH®''(lt)S(lc)"^-EI| = 0 . (13)

We introduce now in eq.(13) the other ORSTB prescriptions. As far as ii) is
concerned, we first define the screened crystal field as

's ' ~ 's' ~ Is",n^^° I ^ 1
where K, eq.(ll), is the TB crystal field. Due to the screening effect of the
term with P in eq.(14), is small, while K may not. Therefore, to apply ii),
we substitute for K in eq.(9) and thus in eq.(13). We see that gives also
the difference between free and localized eigenvalues. In fact, from eq.(4),

<it.° ,?1 HP(s ) I X,°',,s> = e°(X,° ,s)6j^oj^o , + , (15)
which, for gives in the first order perturbation theory. By taking
into account also the off-diagonal elements in eq.(15), and by diagonalizing, we
get a variational estimate of e(J,,s). By the way, it is worth noting that three-
centre integrals should be taken into account only if functions not centred at s
were considered in the variational computation of Also i), therefore, is
accounted for by the choice of K®^ replacing the TB crystal field.

The prescription iii') of ORSTB requires that a<J!.°,s| J!.°' ,s'+n> is substituted
for the overlap integral <Jl°,slJ!,°',s'+n>. In principle, a is It-, orbital- and site-
dependent, but in the practice only one, or at most a few different values are
used, with the only requisite that |5|«1. Therefore, the overlap matrix, eq.(lO),
reads as S(a,it)=I+A(a,k), where A(a,k) is a small correction to I of the same ̂
order as a. Since S(a,lt) appears also in eq.(9), H®'*'(k) as well becomes H®^(oi,k),
and accordingly the TB secular equation (13) is changed into

detlS(a,1t)-^H®^(ct,lt)S(a,lt)-^-EIl = 0 . (16)
By using the Lbwdin expansion for S(a,lt)"^, we get to the first order in a

S(oi,lc)-^H®^(a,lt)S(a,ic)"^ = H^''(a,i<)-J[A(a,l<)H^''(0,l<)+H^''(0,l<)A(a,lc)] . (17)

For each site, we define the difference between localized and free orbitals,
|6Jl,s>=|Jl,s>-| )l°,s>, and we substitute accordingly |!!,,?>-1 6)1,?> for the free or
bitals in eq.(17). All the terms of eq.(17) where either l6)l,?> or K®'^ appears
may be considered of the same order in a as those where A(a,K) appears. Therefore,
retaining only the terms of the first order in a, eq.(17) becomes

S(a,]c)-iH^''(a,lt)S(a,l<)"^ = E° + K®® + U®''(i<) - Q(a,lc) , (18)
Q((x,l<) = 6^t) + i[A(a,l<)V®^(lt)+V®^(]t)A(a,lc)] , (19)
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= Is exp(ilt*n){<6J!,,s| J[V(s)+V(s'+n)] |Jl°',s'+n> + ^21)
<Jl°,s| J[V(s)+V(s'+n)] 16)!,' ,s'+n>} .

The matrix In eq.(18) is obtained from of eq.(12) by substituting
everywhere |J!,,s> and for |)l°,s> and |J!,°',s''>, respectively.

Finally, we recall the discussion concerning eq.(15), and we compare eq.(18)
with eq.(7). It follows that the secular^equations (8) and (16) coincide, provided
that ct is chosen in such a way that Q(a,lt), eq.(19), vanishes. Therefore, the
condition Q(a,i<)=0 represents the exact statement of iii'). The equivalence be
tween ORSTB and CP is thus complete.

IV. ORSTB Electronic Energy Bands of Selenium

As an example, we have computed the energy bands of selenium with the ORSTB pro
cedure, using eigenvalues [8] and very simple orbitals [9] of the free atom. The
crystal potential (see [6]) is consistent with the atomic orbitals used. It is not
in the spirit of the method to worry about the exact fulfilment of ii) and iii')
in the form they have been stated in section III. We have simply introduced both
one and two parameters, which have been determined so that the bands match the
fundamental optical gap of about 2 eV. In the former case. Fig.(la), we have used
a=-0.38 and the screened crystal field computed according to eq.(14). In the latter
case. Fig.(lb), we still have only one factor, a=0.2, multiplying the overlap in
tegrals, but now the unscreened crystal field, eq.(ll), has been computed and then

Fig.l. Bands of selenium
with the ORSTB method

a) Screened crystal field,
a=-0.38. b) TB crystal field
multiplied by 3=0.5, a=0.2;
To agree with the current use
for selenium bands, L and M
label points on the kz=0 and
k2=ir/2 planes of the Brillouin
zone, respectively

5 -
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0 ;

10 -

15 -
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multiplied by 3=0.5. The agreement with other calculations and with experiments
is excellent (see, e.g., [10] as a recent comprehensive reference). •
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