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STRUCTURE OR IMPURITY BAHD AND HOPPING CONDUCTION
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The results of recent Monte-Carlo simulation
of the impirity band structure and related
phenomena in doped semiconductors are reviewed

If the thermal energy kT is smaller than the width of the
impurity beind, the electronic properties of semiconductors such
as temperature dependence of the hopping and band conduction, and
the linewidth of intraimpurity absorption are determined by the
impurity band structure. In this talk we report the results of
Monte-Carlo computer simulation of the impuri'^ band and a quanti
tative study of the above physical phenomena D-T]. For defenite-
ness, we consider an n-type compensated semiconductor where all
acceptors are negatively charged, donors are partly ionized and
positively charged and partly occupied and neutral. If the donor
concentration Ny. is so small that the mean distance between impu
rities is much larger than the effective Bohr radius O- , all
the donor states are localized. Then the donor levels are shifted
mainly by the Coulomb potentials of randomly distributed charge
impurities and the shift is classical, i.e. it is equal to the po
tential created on a given donor. Such a system we call "a classic
al impurity band". The model works well if N^i^ 0.1 Njj where N^^^ is
the Mott transition concentration.

At low temperatures the description of spatial distribution
of ionized and neutral donors and the energy structure of the clas
sical impurity band is a rather complicated many-electron problem
which can be reduced to minimization of the total electrostatic
energy of the system

1-^ cv V ^
where e is the electronic charge, SC- is the lattice dielectric
constant, r. . = | r^ - r.I, r., r. are the donor coordinates,

IJ 1 J ' 1 J

and r^ , are the acceptor ones. The occupation number n^ = 1
if the donor i is occupied by an electron and n. = 0, if it is
ionized. One has to find set { n.} minimizing the total energy H
for a given total ninnber of electrons and the set { of one-
electron energies

i  ̂ 1
(2)

is the potential created on the donor i by all other charges
of the system. The problem has been solved by Monte-Carlo computer
simulation (The program is described in details in [^1,7]).
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A pseudo-random number generator gives N donor and KN acceptor
coordinates within a cube. N ranges from 100 to I6OO at 12 dif
ferent K from 0.01 to 0.98. Er(l-K) electrons are randomly distri
buted between the donors and minimization of eq.(1) is made with
respect to all one-electron transitions. It leads to so-called
pseudoground states. At N— 400 we are able to choose a true gro
und state among them and to check up that there is no difference
between the properties of the ground and the pseudoground states.
Therefore we use only pseudoground states to obtain the density
of states (DS), Perrai level and other quantities. All of them
are averaged over 200-15 different sets of impurity coordinates
at N from 100 to I6OO. Averaged values are extrapolated to N = c-o .
The dependence has been found to be in agreement with the
theoretical predictions at K 1 and at 1 - K 1 [2,Bj,

The most important features of the DS (Pig.1) are the two-
peak structure predicted by Pollak and Knotek r9»1^ and a soft

Coulomb gap in the vicinity of^ the Peimi le-
vel fi U. In this region the computer results
for the DS can be fitted into the law

/ (3)

Pig.(l) Normalized
DS plotted against
energy at K = 0.51
Here and below the
unit of energy is

at 0.15 - A 0.5 (We use the units
2 ^3 /
e  Njj / ̂  energies below). We
cannot study the region /<£"—/v/ ̂  0.15
due to a large size effect. It is a long-
range interaction which is responsible for
the Coulomb gap. So the size effect inereas-
6s at small ] , The constant 06^-i
which agrees with the selfconsistent equat
ion .

Stark Broadening of an Intralmpurity
Absorption Line

To ̂ describe this effect a random spatial
distribution of charged impurities is_usually
assumed. But actually at kT e Nj. ''■'/se-
the distribution is close to that in the gro

und state and is strongly correlated. Distribution of electric
fields on neutral donors in the ground state is computed in T4J»
and the characteristic field is shown to be much smaller than at
random distribution and to increase faster with compensation.

Concentration and Compensation Dependences of the Impurityto Beind Activation ^nergy
The bottom of the conduction band is bent by the potential

of charged impurities. Therefore the band electron conductivity
is determined by the electrons whose energies are larger them the
percolation level V . So the activation energy
where £<, is the binding energy of a single donor. The percolation
level V is computed [6] using the stored spatial distribution of
charged^impurities and results are shown in Pig.(2) by full line
together with other theoretical results P2-1^ and experimental
data 05-ld» strong compensation our theory fits well the ex
perimental points. At intermediate compensation the variation of

becomes of the order of kT. It makes difficult the comparison
of the theory and experiment.
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Temperature Dependence of the Hopping Conduction ^
In the case of neighbour hopping the resistivity has a form

-e-xy* ^ .To treat the problem theoretically
one has to solve the percolation problem with the bonding crite
rion [8J .

e 7

9 2

o o

0.5

•Zz.

CL-
(4)

'< -5'

(5)

o/Aericr/J c.

Thenf =-^o /c where is
the percolation threshold,'and is
a prefactor. The nearest neigHbour
hopping occurs if dimensionless
temperature

j<Tde^ ^
(6)

Pig. (2) ~^o plotted ^ ^
against the compensation deg- j-= - ..yx y,
ree K: The experimental data ^
are taken from f15j (1) and is larger than unity. Then the ty-
[i6J (2). Theoretical results; pical value of the second term in
C6J (fulQ line), [I2j (dotted eq.(4) is smaller than the first one.
line), |l3j (chain line). If t >-> 1, the percolation perturba

tion theory can be used [BJ, It giv
es the shift of the percolation threshold due to small variation
of the bonding criterion. If one negleefcs the second teim in &q.(4),
the percolation threshold v <> = 2 r./a, where r = 0.865

^ C ^ C 1.)
In the first order of the percolation theory the result is

(7)Ic. ~ ^ ~
where angular brackets mean averaging over all pairs of donors
with r^j which are close to r^. In this approximation ̂  is the
activation energy . It has been computed using eq.(4), eq.(7)
and the sets of and /n corresponding to the ground
state. The results are shown by curVe 1 in Pig.(3A). They dras
tically contradict to experimental data.

One can rewrite^eq.(4) in dimensionless variables and define
the function ~ which depends only on t and K.

We have computed this function in a wide range of t and K. Por
this purpose a new block has been added to the minimization prog
ram. It finds the threshold of the percolation between two
opposite faces of the cube, using criterion eq.(4) and the coor
dinates and energies computed in the first part of the program.
At t-1 ̂  0.05 the result is
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t
-/ (8)0.86S ' / z V3.

The perturbation theory gives ^/o =■ /P^g, where is
defined by eq.(7), and we have checked up that f/> and <0 are
in a good agreement. The most peculiar point is that eq.(8) has
been valid only within a very narrow region of t-l^ 0.05, and
that the plot (t-l ) has another linear region

= O.S6S' + -f- ^ (9)
at 0.15^ t~^ ^ 0.5 with a quite different slope and with
a shift ;^<^increasing with K. Usually eq.(9) is valid in all
the temperature range where nearest neigboir hopping is observed.

15 -3In n-Ge, for example, with Sb concentration = 3*10 cm it
covers the temperature range from 1.3 K to 4.3 K. The perturbation
theory region relates to higher temperatures where usually the
band conduction dominates. So the activation energy is rather.na . _

— \>y
than It is shown by curve 2 in

Pig.(3A) to be much closer to the experimental data.

0.5

A) ^
Pig.(3). Temperature dependence of hopping conduction

a) Theoretical and experimental values of plotted against K.
Theoretical results: ^/> (1), '-'*^(2), final result (3)«
Experimental data: p-Ge [17] (a), n-Ge (b)

against t~^^^ and t~^ for the variable range hopping
The difference between the theoretical and experimental values of

<£"3 can be diminished if one takes into account so called "adia-
batic" processes, as has been suggested by Knotek and Pollak [1^•
It means that an electron hops in time intervals when the occupa
tions of some other sites differ from those of the ground state
in such a way that an extra potential created by the sites decrea
ses the activation energy of the first electron. The search for
such combination has been included in the percolation part of the
program, and the results are shown by curve 3 in Pig.(3A). The
verticeil arrows in Pig. (3A) show the extrapolation of the experi
mental points to the purely classical case 0 which is rather
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arbitrary at K>0.4. The inclined arrows relate to the corrections
in the parameters of the p-Ge samples, as proposed in |j8j. One
can see that the agreement between the theoretical and experimen
tal values is satisfactory at least at K^O.7. The theoretical
value at K = 0.9 has a small accuracy due to a large finite size
effect. \

It is interesting that the term in eq.(9) leads to
a slight increase of _p_s with increasing compensation, which has
been observed experimentally .

The same program has been used to compute the percolation
threshold at low temperatures t A where variable range
hopping occurs. Only one compensation K = 0.5 has been studied.
The result is given in Pig.(3B). One can see that the resistivityobeys the law X 7^ ) ̂ ^ e >2-

jo ~ ey (T/ ̂ ^ (10)
predicted earlier TlO. The mnnerical factor ^ , as obtained
from Pig.(3B), is equal to 2.8. The difference between eq.(IO)
and the well-known Mott's law is due to the Coulomb gap in the DS
(see eq. (3)). „ ^

Mott DSO and Pollak L20J critisized eq.(IO). Their main
point is that the low temperature hopping has a many-electron
character. The potential of an electron on the site A (Pig.(4))
creates a correlation of the occupation numbers of neighbouring
sites and a polarization around the site A. So it forms a kind

of polaron. The hop of the
electron from A to B is ac-

_  companied by reconstruction
*1 of the polaronic clouds

around both sites. Mott and

R  Pollak suggest that there is
^  no Coulomb gap for such hops

of polaron, that DS of pola-
rons is constant, and the
Mott law is valid. (Pollak
fSQll has proposed recently
a many-electron cascade hop
ping which gives the exponent

^ ~ , in the temperature dependence
even smaller than 1/4;. We
disagree with them in the fol-

Pig.(4). Transition of polaron gaifsLdied indepen
dently the polaronic transport L21,2^ and argued that the pola
ronic atmosphere can be considered as a renormalization of the
dielectric constant. Then the eq.(3) can be derived for the DS
of the polarons in the same way as for the DS of the one-electron
excitations. This leads to eq.(IO) for the resistivity. Our argu
ments can be formulated also in another way. Let be the ener
gy of the polaron transition from A to B and R be the hop distan
ce. The parameters of pairs contributing to the Mott law obey

the relation cj = const where co-» 0 and R —> as T-*0.
It is important also that the distance between neighbouring pairs
should be of the order of R, otherwise they do not contribute to
d.c. conduction. Suppose that we excite two such pairs simulta-
neuosly. The work 2 co + is nesessary, where the interaction

energy of pairs = cvC e^/se, R and the factor «a<d can be
negative. Using the Mott relation cj R = const, one finds that
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2
e /ac. R CO as T 0. It means that the ground state is un
stable with respect to simultaneous creation of the two pairs.
It means in fact that in the true ground state the distance bet
ween such pairs is much larger than R and they cannot contribute
to the d.c. conduction. Only the relation co R = const, is
selfconsistent and it gives eg.(10). It is not essential in the
above consideration whether we are speaking about one-electron
excitations or about polarons. Only the charge of an excitation
is important . For one-electron excitations these arguments
have been check^ up by the Monte-Carlo simulation reported here.
So we hope they are valid for polarons as well.
(ii) We believe that the above discussion is essential only for
extremely low temperatures, while in the region accessible to
the Monte-Carlo simulation ( l£-y"l>0.15) many-electron hopping
is not very important. The arguments are as follows; The polaro-
nic effect has to give an exponential fall of the DS [2^ but
we observe a soft' gap. Also we do not observe any difference bet
ween the DS averaged over pseudoground states and true ground
state. The preparation of the pseudoground state includes minimi
zation with respect to one-electron transitions only, while the
exponential fall should be the result of many-electron minimiza
tion. So this last step is apparently of no importance. There
fore we believe that the computation of resistivity in terms of
one-electron hopping discussed above is a good approximation in
the temperature range under study. (In fact, the experiments at
lower temperatures are very difficult to make because resistivi
ty becomes very large).

Unfortimately, the experimental data on the variable range
hopping in crystalline semiconductors are rather uncertain.
The detailed analysis made by Zabrodskii f23] confirms rather
eq.(IO) than the Mott law. (See also fSj). On the other hand,
since the well-known experiments in MNOS devices support Mott's
theory, the situation is not quite clear.

We believe that the minimization program reported here will
be useful for some other applications. For example, we are stu-
ding now the density of low-energy pair excitations important
for low-temperature a.c. conduction and specific heat. The other
application considered by our group is two-dimensional impurity
band of Na-doped MOS-structure. The electron-electron interaction
leads to the interesting peculiarities of the apparent DS obtain
ed by conventional methods. Namely if can be very large and even
negative.
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