
Proc. 15th Int. Conf. Physics of Semiconductors, Kyoto, 1980

J. Phys. Soc. Japan 49 (1980) Suppl. A p. 383-386

THEORY OF RESISTENCE AND HALL MAXIMA
IN Sb-DOPED Ge IN THE METALLIC RANGE

Tetsuro Saso and Tadao Kasuya+

Max-Planck-Institut fur Festkorperforschung
Stuttgart, West Germany

+Department of Physics, Faculty of Science
Tohoku University, Sendai, 980 Japan

The transport properties of heavily doped semicon
ductors in the metallic concentration range are
investigated by the degenerate electron gas model.
Especially, the screening of impurities and the
scattering of electrons by them are studied in
detail by the Kohn-Sham method. The characteristic
maxima in the temperature dependence of resistivity
and Hall coefficient of Sb-doped Ge, which has been
so far attributed to the existence of impurity band,
are naturally explained by the present model.

I. Introduction

Resistivity of heavily doped semiconductors shows an activation
type temperature dependence with activation energy ei and £3 in the
low concentration range, and Hall coefficient shows a maximum [1].
These have been interpreted by the so-called "two band model" in
which an impurity band exists below the conduction band and electric
conduction can occur in this impurity band at low temperatures. In
the high concentration range, the temperature dependence is weak and
resistivity and Hall coefficient go to constant values at lowest
temperatures. Therefore, the high concentration range is sometimes
called as the metallic range. But the activation energy ej and the
maxima in Hall coefficient seem to persist even in this range,
although the maxima are rather smaller than in the low concentration
range. These characters have been so far attributed to the existence
of impurity band even in this high concentration range [2]. But ex
periments on electronic specific heat [3], piezoresistance [4], and
de Haas-Shbunikov oscillation [5] seem to be well explained by the
degenerate electron gas model without impurity band. Furthermore the
detailed experiment on the temperature dependence of resistivity of
Sb-doped Ge by Sasaki, et al. [6] shows the characteristic maxima
around Tjp^jj-v^O.TTp, where Tp denotes the Fermi temperature obtained
by assuming a rigid conduction band. These maxima disappear under
the unixial saturation-stress in <111> direction which forces all
electrons into a single valley. These experiments can not be ex
plained by the simple two band model, but rather seem to suggest
that the degenerate electron gas model might work well. For, in the
present case, a large temperature dependence should be expected due
to the small Fermi temperature (<100K). Thus in the present report
we investigate the transport properties of heavily doped semiconduc
tors, especially of Sb-doped Ge as an example, by the degenerate
electron gas model without impurity band.

II. Method of Calculation

By using the Boltzmann equation and the variational method.
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longitudinal and transverse conductivities are expressed in the
single valley case as tf̂ =n-| e2<T//>/m// and ax=nie2 <Tj.>/mx, where n-j is
the number of electrons in a single valley and <Tcx> (a=//,i) the
thermal average of the electron relaxation time. In the unstressed
case with v valleys, conductivity is given by a=(v/3)(a^+2 Ox) and
Hall coefficient by

P  _ 3 ,2<t//u> + <Ti >) /(<T//> , 2<t^>.2
^  n„ec^ itwmx ^2 ̂ ̂  ̂ m,, ^ mj. ' .

^  IT^X

where ng is the total number of electrons. The inverse relaxation
time is assumed to be given by the simple sum of the contributions
from the impurity scattering and the phonon scattering as
1/T^'"P(e)+1/Tgh(e), and the latter is assumed to be given by the sum
of the contributions from the acoustic and the optical phonon scat
tering. is calculated by

1  '^ka
=<l (1 - 7;=^)S(k,k') >

^k
(2)

rimp(e) k' a

where <...> means the average on the direction of k, Vg^ the velocity
and S(k,k')the transition probability from k to k'. In the 1st Born
approximation,

2ttN. . 2
s(k,k') =

-h

Mtk-tk')

[(k-k')2+q2^(T)F(K-k')]^
(3)

where we used the random phase approximation(RPA) for impurity
screening, and N^mp denotes the number of impurities (which we
assume to be equal to Ug), k the dielectric constant, qxF(T) the
Thomas-Fermi screening parameter at finite temperatures and F(k-k')
is given by the sum of the contribution from v valleys

F(q) = ^ t F(|q|/2|kf^^l)
"1=1

(4)
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with the Fermi wave vector of i-th valley in the direction of q
and F(x) the Lindhard function at finite temperatures. In actual cal
culation it is sufficient to use its zero temperature form. Further
more, in the unstressed four valley case, F(q|) is averaged over the
direction of q. This approximation, as well as the validity of the
variational method, was checked by solving the Boltzmann equation
directly in a numerical method using the unaveraged F(q). Results at
zero temperature, which we will refer to as p(RPA(anisotropic)) later,
are shown in Figs. 1 and 2 by the full lines which should be com
pared with those obtained from the exact solution of the Boltzmann
equation.

Next, we estimate the effect of nonlinear screening and manybody
interaction by the Kohn-Sham method, using the isotropic effective

2 1/3mass m^j (= (m//mj_) ). We assume the independent scatterer approxima
tion and neglect the correlation among the positions of impurities.
Thus we treat the screening of a single impurity placed in otherwise
homogenious electron gas with homogenious positive background, simi
lar to the screening of an impurity in metals. The Schrodinger-like
equation with effective potential

V(r)
_  e2 , e2f ,

Kr K J I r-r' | V^Jn(r):
occ

n(r) = Z |,j;^ (r) (5)

r

are solved self-consistently by interaction. In this equation n(r)
denotes the charge density of electrons and the exchange—correla
tion potential, for which we assume that Xa form witha=2/3. After the
iteration scheme converges, we can calculate resistivity from the
scattering phase shift ij^(l=0~6). As a result, the resistivity is
much enhanced by a factor of 1.5 compared with those obtained with
the 1st Born approximation for scattering and RPA for screening
(p (RPA (isotropic) ) in Fig.1). VJe define the enhancement factor gj^g as

the ratio of the resistivity obtained
by the Kohn-Sham method to those by
the RPA and the 1st Born approximation

Ge(Sb) «valleys in the isotropic mass approximation.
• exp.(sasaki) Multiplying this factor to p(RPA(ani-
■ "ic sotropic) ) , we obtained the values

shown in Figs.1 and 2 by the filled
circles.

The effect of multiple scattering
is calculated by the single site co
herent potential approximation (CPA)
v/ith 5-function type attractive po
tential for each impurity with strength
Vq and momentum space cutoff para
meter k0. We choose kQ to be equal to
qTF(T=0). Vq is determined so as to
reproduce the values of resistivities
shown in Figs.1 and 2 by the filled
circles, when the multiple scattering
renormalization is omitted in electron
self-energy. We define the enhancement
factor gcPA as the rato of p(CPA) to
?KS* P(RPA(anisotropic)). The results
are shown in Figs. 1 and 2 by the open
circles. Agreement with experiments is
very good except the concentration
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In calculating the
temperature dependence of
resistivity and Hall coef
ficient, we take into ac
count the effect of non

linear screening, etc-, by
multiplying the factor

^KS^CPA in
eq.(2). Temperature depen
dence of the enhancement

factor is neglected. The
result for the unstressed

case are shown in Fig. 3.
The characteristic peaks
in the four valley case
are well reproduced at the
correct positions, though
the absolute values are

smaller than the experiments in the lower concentrations. The mecha
nism of the appearance of these peaks is as follows. In the four
valley case, the screening length of impurity potential is
shorter than the electron wave length kp at T=OK. As temperature in
creases, the screening length increases but the thermal wave length
of electrons decreases. Thus a strong scattering occurs in a resonant
fashion at some temperature where the potential range becomes com
parable to the thermal wave length of electrons. In the single valley
case under uniaxial stress, the screening length is longer than the
thermal wave length, thus maxima do not appear in this case.

III. Conclusion

In this report we proposed a detailed calculation of the transport
properties of Sb-doped Ge in the metallic concentration range by the
degenerate electron gas model without impurity band, including the
effect of anisotropic effective mass, the nonlinear screening of im
purities, the non-Born scattering, the many-body effect and the
multiple scattering by many impurities. Note that the present cal
culation contains no adjustable parameters. As a result, we could
obtain the absolute values of resistivity which agree well with ex
periments and could reproduce a characteristic maxima in the tempera
ture dependence of resistivity and Hall coefficient, the latter of
which has been so far attributed to the existence of impurity band in
the high concentration range. There remains some quantitative dis
agreement with experiments on the values of resistivity in the con
centration near Nq. We consider that it is necessary to take into
account the effect of impurity clusters in this range. Studies along
this line are now under progress.
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