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The ground-state energy of a system consisting of an
exciton in the presence of a neutral donor in semi-
conductors is calculated for an arbitrary value of
the electron to the hole mass ratio using a varia-
tional approach. The energy bands for the electron
and for the hole are assumed to be parabolic. The
system is found to be bound for all values of the
electron to the hole mass ratio.

Introduction

Since Lampert [1] first suggested the possibility of an exciton
binding to a neutral donor impurity, several theoretical attempts
[2] have been made to calculate the binding energy of this system
for various values of the electron to the hole mass ratio (o).
Hopfield [3] using known values of the energies of the hydrogen
molecule and negative hydrogen ion, estimated this binding energy
as a function of ¢ by interpolation. Sharma and Rodriguez [4]
using a variational approach, found that the binding energy dropped
sharply at first and then increased as a function of o. Munschy
and co-workers [5,6] have reported that the exciton-neutral
impurity complex is not bound for oo < ¢ < 3 where 0c is some
constant between 1 and 2. Two recent calculations, one using the
local density approximation [7] and the other using perturbation
theory [2], show that the system is bound for all values of o.

A third calculation due to Herbert [8], using the configuration
interaction approach, shows extremely large binding energies.

In view of the conflicting results obtained using different
approaches, we decided to undertake a variational calculation for
the ground-state energy of this complex. Our results show that
the system is bound for all values of o. This is the first truly
variational calculation which shows binding for all values of the
mass ratio. The procedure we follow consists of two parts. In
the first part which is more appropriate for ¢ ¥ 10, we derive an
effective potential between the positive ion and the hole using a
trial wave function which is a product of generalized Hylleras-Ore
type wave function [9] and an envelope funciton which depends on
the positive ion-hole distance. This potential is then solved
variationally assuming for the envelope function the ground-state
solution of the Morse potential. 1In the second part which is
appropriate for ¢ > 10, we calculate the ground-state energy
using a variational function which is a product of the hole wave
function and Chandrasekhar [10] wave function for the D- system,
similar to what was done in Reference [5].

457



K. K. Bajas, T. D. CLARK and W. M. THEIS
Method

Within the effective mass approximation assuming parabolic
bands, the Hamiltonian of two electrons of mass mg and a hole of
mass my in the presence of a positive ion is
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where the positive ion is assumed to be at the origin and r,, r,,
and r, are the distances of the two electrons and a hole, réspeét-
ively; from the positive ion. All energies and diitan eg are
expressed in terms 05 the_impurity Rydberg R = mge /2e6h4 and

Bohr radius agy = eggh“/m e2, respectively, where e, is the static
dielectric constant of %he medium.

For o < 10 we calculate the ground-state energy following a
variational approach and choose a trial wave function of the form

¢ = [v(r)/N(ry)]G(ry) (2)
with
N (x,) =flw(r)|2drr . (3)

Here y(r) is a function of electron-hole distances only; single
index r is used to designate these distances. The expectation

value of the Hamiltonian with respect to ¢ is then calculated in
two steps. First, we integrate over the electron coordinates to
obtain the equation of motion of the hole in an effective poten-
tial, U (r3). This potential is evaluated using the following
form of $
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and following a procedure similar to that outlined in Reference
[11]. Here o, B, v, and § are variational parameters. For a

given set of values of these parameters, the function U (r,) has
a form similar to that of a Morse potential. The functfon G(r3)
is, therefore, chosen to have the form of the ground-state
eigenfunction of the Morse Potential with three variational par-

ameters. The ground-state energy E is then obtained by minimizing
the expectation value of H with respect to seven variational par-
ameters for a given value of o. We find that the value of E thus
calculated is very close to that obtained by using a much simpler
form of G(r3), i.e.,
& '3

G(ry)~ry , (5)

3
where e is a variational parmater and n is found to be of the order
unity. For o > 10 we calculate the ground-state energy using a
trial wave function which is a product of the hole wave function
and Chandrasekhar [10] wave function for the D~ system. We de-
fine the binding energy Ep (also called the dissociation energy)
as

_ 2 + o0
ED ==E 1+ o0

(6)
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The values of Ej as a function of ¢ were calculated using the
first wave function, and the system was found to be bound for o~10.
This calculation was extended upto o = 20, and the system was still
bound. The values of E_ for ¢ > 10 were determined using the second
wave function and the sttem was bound for this range of values of
oc. Also the values of E, for ¢ between 10 and 20 were larger
than those obtained by using the first wave function. Thus, we
find that the system is bound for all values of ¢, i.e., there are
no regions where the complex is unstable. In Fig. (1) we display
the variation of Ep as a function of ¢ and stop at ¢ = 5 for con-
venience. The value of E. at ¢ = 1 is calculated to be 0.036 which
compares quite favorably with a very accurately determined value of
0.058 for positronium hydride by Navin, et al. [12], who used an
approach specifically designed for o = 1. For comparison we have
also plotted the results of some other calculations. Our results
compare rather well with those of Wunsche, et al. [7], who use the
local density approximation, although our values of E, are some-
what lower than theirs. We have not displayed the results of
Reference [2] which shows that the system is bound for all ¢ since
there is a serious question about the convergence of its perturb-
ation expansion.

0.14

.05 1

BINDING ENERGY E, (RYDBERG)

1 MC

o T —T— T T T r—

0.l 0.5 | 2 3 4
MASS RATIO O

o -

Fig. 1 Variation of the binding energy of E_ expressed in terms
of the impurity Rydberg as a function of the mass ratio o:

SR - Sharma, et al. [4], WH - Wunsche, et al. [7],

MC - Munchy, et al. [5], P - Pan, et al. [13], and

BCT - Present Calculation

To conclude, we have calculated the ground-state energy of an
exciton-donor complex as a function of ¢ using a variational
approach. We find that the system is bound for all values of o.
This is the first truly variational calculation which shows binding
for all o. Our values of E_ represent lower bounds and are some-
times lower than those of otYhers in some regions of o. The
appropriate inclusion of electron-electron correlations in the
first wave function and the electron-hole correlations in the
second wave function will increase the values of ED- Calculations

which include such effects are in progress.
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