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CALCULATION OF AUGER COEFFICIENTS FOR SILICON
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Proceeding from phonon-assisted Auger recombination
the overlap integrals are calculated for Si by means
of the full zone double group k*p-method. The re
sults confirm that this recombination mechanism is
predominating, both for highly doped as well as for
highly excited Si where electron-hole drops appear.

I. Introduction

Phonon-assisted Auger recombination is suggested to be an impor
tant recombination process in indirect band gap semiconductors.
To confirm this by quantitative calculations one has two diffi
culties: (i) Being a second order process there are several con
tributions of the different intermediate states where usually
only one is regarded as predominating [1,2]. (ii) The overlap
integrals arising from the matrix elements of the electron-el
ectron interaction are generally roughly estimated [3] . In con
trast, these integrals are calculated here for Si from first
principles using the full zone double group k.p-method. More
over, the second order process is investigated in more detail
with the result that several contributions are of the same or
der of magnitude and must be taken into account. The Auger co
efficients for Si calculated in this way are in good agreement
with experimental values.

II. Phonon-assisted Auger Recombination

Phonon-assisted Auger recombination is a second order process
involving two electrons and a hole (eeh-process) or one electron
and two holes (ehh-process) and in addition one phonon. The tran
sition probability is given by second order perturbation theory.
Therefore the recombination process goes over intermediate states
which are selected as follows: (i) Interband phonon scattering is
omitted as usual, (ii) Coulomb terms are neglected in comparison
with exchange terms because they are smaller by the dielectric
constant e [4]» e being 10 to 20 for the semiconductors in ques
tion. (iii) The large wave vector K between the band edges of the
conduction band and the valence band can occur in the denominator;
such terms are negligible, (iv) The initial states shall be near
the corresponding band edges because there is the highest occupa
tion probability.
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The total recombination probability is obtained by summing over
all transition possibilities multipled by their statistical
weight. The sums run over all electron and phonon states inclu
ding the different valence bands and phonon branches as well as
phonon emission and phonon absorption. Most of the sums can be
evaluated immediately. The results are described by the life
time T or the Auger coefficient where

1 - r— = C n
T  n

(n = electron concentration). (1)

C  is essential for n-type material, the analogous coefficient C
n  r

for p-type material. Details of the calculation are given in an
other paper fs"] .

III. Overlap Integrals

The evaluation of the Auger coefficients requires the know
ledge of the overlap integrals

I  , = / u ,u dx
n'n n' n

(2)

which follow from the matrix elements of the electron-electron
interaction; u^^ are the lattice periodic Bloch factors, n inclu
des all electronic quantum numbers. These integrals are calcula
ted by means of the full zone double group k«p-method which is
described in some papers [6,7]. The method proceeds from a trans
formation of the Schrodinger equation into the k-space where the
eigenvalue problem is given by a matrix. This matrix contains
the eigenvalues and momentum matrix elements for k=0 as para
meters. The energy values are taken partly from experiments,
partly from band calculations [6]. The momentum matrix elements
can be reduced by symmetry conditions to ten independent values
which are used as fitting parameters for the band structure.
Then the problem is restricted to a 30x30 matrix and solved by
numerical methods. The solution yields immediately the overlap
integrals.

IV. Results

The Auger coefficients of Si are calculated for different tempe
ratures and compared with the experimental values of Dziewior and
Schmid [8] (Table 1).

T 77K 300K 400K

(theor)

(exp)

0.53 0.72 0.87

2.3 2.8 2.8

C  (theor)

Cp Cexjo)

0.75 1.03 1.25

0.78 0.99 1.2

Table 1
~31 6 ~1

Auger coefficients for Si (in units 10 cm sec )
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The agreement is very good, particularly for C whereas the valu-
P

es of differ a little. This may be due to uncertainties of the

deformation potentials or due to uncertainties in the measure of
the electron concentration.

As mentioned above the results are also valid for electron-hole

drops. Here the measurements give usually C = C^+Cp and the tem
perature is Tfts 4K. Moreover, the experimental value must be cor
rected by the enhancement factor g where g<»3.5- for Si Q9,103.
Then the experimental value is C=1.91, the theoretical one C=1.28

—31 6 ""1(in units 10 cm sec ). The agreement is again fairly good. The
small discrepancy corresponds to the difference in the results
for C^.

As a summary, our calculations confirm that phonon-assisted Auger
recombination is the essential non-radiative recombination mecha

nism in highly doped and highly excited Si. Obviously these re
sults hold also for other indirect band gap semiconductors.
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