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Interaction of electrons with optic phonons
in InSb-type semiconductors in the resonant
region of "RwjjSihuiL is considered theoretical
ly, taking consistently into account real
band structure of narrow gap materials. Non-
resonant contribution to polaron energy is
also calculated as a function of magnetic
field and it is shown that the "offset"

effect, claimed by some authors, does not
exist.

I. Introduction

Since the discovery of magneto-optical effects due to resonant
interaction of electrons with optic phonons in InSb [1], resonant
behavior has become subject of substantial interest [2,3,4,5,6,7].

Shortly after the discovery of the resonant polaron behavior a
claim was made of an "offset" effect [8], by which the authors
understood an energy shift of cfhuL between lower and upper polaron
branches, as ug passes wt. This was used by various authors to de-
temine experimentally the polar coupling constant a in InSb [8],
InAs [9] and HgCdTe [10].

While most experiments have been performed on narrow gap mate
rials the existing theoretical work has used the standard one-band
effective mass approximation. In this paper we describe resonant
polarons in InSb-type semiconductors consistently using the real
band structure of these materials (small energy gap and strong
spin-orbit interaction). We apply the Green function formalism,
necessary for a correct description of the upper polaron branch. In
the second part we calculate the nonresonant contribution to polaron
energy as a function of magnetic field and demonstrate that the
"offset" effect does not exist.

II. Resonant Polarons

The initial Hamiltonian for our problem reads

H = p2/2m„ . V^(?) . ♦ "pi. ♦ Ilpsn , (D
where ra^ is the free electron mass, ? = p +(e/c)J is the kinetic
momentum, A is the vector potential of an external magnetic field,
Vq is the periodic potential of the lattice, HgQ is the spin-orbit
interaction, Hpp denotes the Prflhlich polar electron-phonon inter
action (assumed weak), and Hpjm is the free phonon field.
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The first three terms describe band structure of the material
in the presence of a magnetic field. This electronic part is solved
for the vicinity of the r point using a three-level model. The latter
takes exactly into account the k-p interaction between 16,18 and I7
levels, including explicitly the small energy gap Cg and the spin-
-orbit energy A [11,12]. The resulting electron energies (assuming
A > ect) are

E(n,k .±) =-e„/2 + [(e^/2)^ + e D(n,k„,±) , (2)

where

D(n,k^,±) = •na)^(n+l/2) + -K^k^/2m* ? y„|g*|H/2^ (3)

with u = eH/m*c. Here m* and g* denote the effective mass and the
g-factSr at th§ bottom °of conduction band.Plus and minus signs
refer to the two effective-spin states. The electron wavefunctions
are

f", (r) = £ c, (n,k^, + ) f?(r) u-, (r) (4)nk^ 1 ' z' 1 1 ,

vdiere the summation 1 is over the levels in question (8 states
including spin), f are envelope functions of the harmonic-oscillator
type and u denote the Luttinger-Kohn periodic amplitudes. The wave-
functions (4) are mixtures of s-like and p-like components, as well
as spin-up and spin-down states (explicit expressions are given in
[12],

In our approach the Frflhlich interaction Hamiltonian can be
used directly as a perturbation because the electron wavefunctions
of eq. (4) have been obtained without the Luttinger-Kohn effective
mass transformation. We consider resonant ease: eJ - e^ e Ticol, in
which the upper electron state B(n=l, ky=0, k2=0, s=+7 can decay
by a virtual emission of an optic phonon 9 to the ground state
y(0, k„, kz, +). The resonant part of the electron selfenergy I
of the state B is (in the lowest order of perturbation theory),

^(E) =2_, L ^ i r (5)
k k q E+ir -e - fiioy
y z ̂  0 0 L

An additional weak scattering has been introduced by a phenome-
nological constant parameter r >0. This eliminates a nonphysical
divergence at E = e"*" + fiwT . The selfenergy is then calculated
using electron energies (2),(3) and wavefunctions (4) as a func
tion of magnetic field in the resonant region. The s-p mixing in
the wavefunctions (4) results in an effective weakening of the
electron-phonon interaction for a given coupling constant a
(similar result is obtained in absence of a magnetic field, cf.
[13]).

Next we calculate the spectral function A(E) for the state
6(1,0,0, + ),

A(E) = - ——5—5" (6)
¥  (E-e^ -a) +r

where A and r are real and imaginary parts of selfenergy, respec
tively: 2:(E) = A(E)-ir(E). For pure crystals, in which intraband
magneto-optical transitions occur at low k values, maxima of
spectral function correspond to maxima of the density of electron
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states, i.e. to the observable polaron energies. Omitting the
detailed calculations for the lack of space we note that below
the resonant energy Eq = ej + fiUL the real part of selfenergy has

a strong maximum (A ^ = q) and the imaginary
part r E 0 (again for T = 0). Above the resonant energy the roles
reverse: A has a finite value and r has a strong maximum
(r ~ (E-Eq)"1/2 if r =0). The alternating singularities of real
and imaginary parts of selfenergy push away the polaron energies
from the resonant value E^jthe "pinning" effect both below and
above the resonance occurs.
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Fig.l Spectral function (in arbitrary
units) of the |n=l, ky=0, k2=0, s=+)
polaron state as a function of energy
(in -ftML units) for three values of
magnetic field, near the resonance with
optic phonons: Upper curve is for x=0.95,
middle curve for x=1.00, and lower curve
for x=1.05, where x = (.z^ - e^) The
dashed lines indicate respective positions
of the Landau level (1,0,0,+) unperturb
ed by the electron-phonon interaction.

Fig. 2 Polaron ener
gies in InAs as func
tions of a magnetic
field in the resonant
region; Experimental
points are after Har
per et al. [9 ]j solid
lines are theoretical
(this work). Dashed
line indicates the
energy of the Landau
level |l,0,0,+) in ab
sence of electron-pho
non interaction.
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Fig.l shows the spectral function of B(1,0,0,+) state at k2=0
for three values of the magnetic field: below, at, and above the
resonance. It can be seen that two maxima of the spectral function
(polaron branches) appear, the upper one being broader. Far below
and far above the resonance only one branch is observed. This
strongly resembles the result of Vigneron et al. [7] for the opti
cal absorption, confirming our supposition on the close relation
between features of the spectral function and observables.
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In Fig.2 calculated positions of the maxima are compared
with experimental data of Harper et al. [ 9 ] for InAs. Equally
good fit has been obtained using the same method for a two-miode
polaron in the HgQ ■72*^^0 28'^® mixed crystal [l4].
111. Nonresonant Part of Polaron Energy

The nonresonant contribution to polaron energy is calculated
by taking into account the electron-phonon coupling of a given Lan
dau state with all other states by means of eq. (5). For n=l state
the summation excludes contribution of n=0 state, which has been
calculated above. The summs can be converted into integrals (here
we assume a parabolic energy band) [15] . The results are shown in
Table 1. It can be seen that the nonresonant contribution is a
smooth function of a magnetic field, not undergoing any dramatic
change as ooq passes 01^.

1  ®o
0.1 1.008 0.911
0.3 1.024 0.886
0.5 1.040 0.880
0.7 1.055 0.881
0.9 1.070 0.884 Table 1 Nonresonant contribution to
1.0 1.077 0.886 polaron energy for n=0 and n=l Landau
1.1 1.084 0.888 states as functions of magnetic field
1.3 1.098 0.894 (1 = 11(0 /hu)-,. ) . The energy shifts are
1.5 1.111 0.900 ° ^
1.7 1.124 0.906 . ^nr ^
1.9 1.136 0.915 o " ""^"l^o 1 " -°^'^L®1
2.0 1.142 0.916

Thus we conclude that the "offset" effect does not exist and
that the claims of having it observed are due to incorrect calcula
tion of the upper polaron branch (using Wigner-Brillouin perturba
tion theory) and to improper extrapolation of the lower polaron
branch to higher magnetic fields.
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