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MAGNETO-OPTICAL OSCILLATIONS IN Cd3As,
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The magneto-absorption of a series of Cd3As, samples with
Fermi energies varying from 0.10 to 0.25 eV was measured in
order to cover a larger energy interval. An excellent fit
with Bodnar's model is obtained over the entire energy range,
thus confirming the numerical values suggested in this model.
The magnetic field however appears to flatten the Landau
levels of the valence band, thus making the predicted minimum
in this band unobservable.

I. Introduction and Theory

This paper reports on interband magneto-optical data taken from the transmission
of identically oriented single crystals of CdzAs,. Similar measurements had been
reported by Haidemenakis [1] but the data covered a small energy interval. Further
more, Wagner [2] had analyzed these data in the light of an inverted band model
and obtained a mediocre fit with an energy gap E; = -0.25 eV between the conduction
and light hole valence bands which is considerably different from that found by
extrapolating Wagner's own magneto-optical data from Cd3_yZnyAsy alloys
(v - 0.10 eV) or from that obtained by Bodnar (-0.095 eV) [3].

The Bodnar model is based on a Kane-type inverted band structure except that the
tetragonal symmetry gives rise to a crystal field splitting and an anisotropy in
the interband momentum matrix element. As a consequence, the conduction band and
the heavy hole valence band are not degenerate at the I' point as in HgTe and a
surface of constant energy defines an ellipsoid of revolution whose major axis is
along the crystallographic c axis. The energy E, measured from the bottom of the
conduction band is related to the wavevector k by

YE) = 8@k 2 + k2] + £ (B)k, 2

(@D)
‘ =E(@E - E)[EE + A) + §(E + 24/3)]
£1(E) = PZ[E(E + 24/3) + §(E + A/3)] , (2)
£2(E) = P E(E + 2A/3) (3

and the z direction is taken along the c axis. E, represents the energy gap,

A the spin orbit coupling parameter, P. and Py the interband momentum matrix
elements respectively perpendicular and parallel to the c axis and § the crystal
field splitting parameter first introduced by Kildal [4]. By analyzing data on
single crystals, Bodnar obtained the followi numerical values for these band
parameters: Eg = -0.095 eV, Py = 7.43 x 10" !%eVm, P, =7.21 x 10710 evm, A =
0.27 eV, § = 0.085 eV. Figure (1) illustrates the resulting band structure for
a direction relevant to our experiments.
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It was shown by Wallace [5] that with the present model, the period P of the
Shubnikov de Haas oscillations as the Landau levels pass through the Fermi level
in the conduction band is given by

2e //fl(flcosze + f,8in20)
-=— (4)

4 Y E=E,

?

where 6 is the angle between the magnetic field and the c axis. This result can
be applied to interband transitions, for a given photon energy, if Ep is replaced
by the energy E = E; in the conduction band since the initial and final states of
the transition do not change with magnetic field. The initial state involved in
the transition is in the heavy hole band whose Landau levels in a magnetic field
are located at energies Ev(n) from the bottom of the conduction band where n is
the quantum number. For simplicity, the energies of these Landau levels will be
written

Ev(ﬂ)=-X’(Lu%E=—X-he (5)

*

m P

where B is the magnetic field, 3 the phase factor and X the energy gap between the
conduction band and the heavy hole valence band whose effective mass is mv*. The
heavy hole band in Bodnar's model is not of a standard parabolic form as implied
by equation (5) but it will be seen that this is not important as far as the
initial conclusions are concerned.

Finally, the photon energy hv relates equations (4) and (5) by

hv =EC - EV (6)

and the selection rule An =0 applies.
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II. Experimental Results and Discussion

The single crystals of Cd3As, were obtained by a vapour transport method as
described elsewhere [6]. Those chosen grew in the form on thin platelets with
(112) faces of optical quality. Since the tetragonal unit cell of Cd3Asy has a
c/a ratio very close to 2, one may readily show that the normal to these faces was
at an angle of 54.7° with the c axis. The magneto-transmission measurements were
performed in the Faraday configuration with essentially unpolarised radiation.

The first step in analyzing magneto-oscillations is to verify the periodicity of
the oscillations in 1/B and to estimate the quantum numbers. The standard plot
of integers versus the inverse field at which minima in the transmission were
observed gives an excellent straight line illustrating the expected periodicity but
the intercept is ~ -0.8. Thus, the phase factor 3 already included in equation (5)
is not % as in simple cases [7]. For sample 1B, 9 is even found to increase
smoothly with energy from +0.8 to +1.2.

A plot of hv as a function of field is inadequate if several samples (of dif-
ferent 9 and uncertain n) are to be analyzed together. A simple way to circumvent
this problem is to work with the period of the oscillations, thereby eliminating
the phase factor and the quantum numbers. The average periods measured for each
photon energy gre conveniently illustrated in Figure (2) by a plot of hv as a
function of P72 since in the case of cubic symmetry, such a plot yields a straight

line [8].
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Fig. 2 Photon energy of transmission minima as
a function of P72! The curve represents
the prediction of the Bodnar model

From Bodnar's model, one may calculate the E; (and Ey) values. This calculation
first makes use of equation (4), modified for interband transitions, having inser-
ted the numerical values found by Bodnar and a 6 value of 54.7°, as in our expe-
riments. This gives the Eg values corresponding to the observed periods whereas
the Ey values are obtained from equation (6). Surprisingly, the Ey values are
virtually constant varying from 8 to 17 meV. Furthermore, most of this variation
is directly related to the fine structure appearing in the data and which will be
discussed below. Thus, Ey is found to be constant although the period varies by
a factor of 2.5 over the investigated energy interval. This implies that the
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second term in equation (5) is negligible, so .that Ey * -X which regardless of the
simplification postulated earlier, means that the heavy hole valence band is flat
with a large effective mass in the investigated direction. This is compatible
with the results of Gelten et al. [9]. The weighted average of the X values is

13 meV. With this value, one can now plot hv - X as a function on P72 on the same
graph as the experimental points and thus obtain the curve in Figure (2). The
coincidence of the experimental results to the calculated curve is quite good over
the entire 0.10 to 0.20 eV range and even up to 0.25 eV, when data [10] from
highly doped samples are included.

The validity of the Bodnar model and of the parameter values are thus confirmed
except for the shape of the heavy hole valence band. As shown in Figure 1), a
small minimum is predicted at the T point in an otherwise flat band. The data
however do not reflect the existence of such a minimum indicating a flat band even
at the T point. Following this result, one may question the significance of the
experimental gap of X = 13 meV between the conduction and heavy hole bands. Since
the predicted heavy hole band is flat away from the I' point, the Landau levels
would not be expected to move appreciably with a varying magnetic field. However
at the T point, the conduction-band-like curvature would cause the Landau levels
to rise with increasing magnetic fields. Thus, the Landau levels would tend to
flatten out with increasing magnetic fields and remain at approximately the posi-
tion occupied away from the T' point in the absence of a magnetic field.

Finally, a consideration of the fine structure in the data is warranted. The
data for a given sample usually yields a short line segment whose slope is greater
than that of the general curve in Figure (2). At the highest investigated energies
(> 0.20 eV), these segments are vertical, indicating the independence of the
period with respect to the photon energy which is characteristic of the optical
Shubnikov de Haas effect [11]. Thus, the excessive slopes of certain segments
below 0.20 eV suggest that this phenomenon is still present although the main
contribution is due to interband transitions. Since the optical Shubnikov de
Haas effect has a period directly related to the Fermi energy and the data in our
experiments were always taken near the Fermi energy of a given sample, the two
effects will give almost the same period. Thus, the perturbation due to the
optical Shubnikov-de Haas effect causes the fine structure in Figure (2) and also
causesa variation in the phase factor referred to earlier. Also, an examination
of the Ey values shows that they differ from the average value of 13 meV according
to the position of the points along the line segments. Thus, most of the varia-
tion in the Ey values is due to this fine structure.
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