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The microscopic origin of the high electrical
conductivity of graphite intercalation compounds
is discussed. The electron-phonon coupling is
shown to be due to modulations of the tight
binding matrix elements more than to charge fluc
tuations as in normal metals. This coupling is
used to compute the conductivity as well as other
properties and an overall good agreement with
available experiments is obtained.

I. Introduction

Recently there have been reports according to which the conducti
vity of some graphite intercalation compounds can reach or exceed
that of copper at room temperature [1]. These syntetic metals are
compounds in which graphite layers alternate with intercalate layers
[1-33 . The intercalate molecules can be of many different types and
they can either give (donors) or take (acceptors) charge from the
graphite layers. Of particular interest are the acceptors in which
the intercalate layers contain strong acids like ASF5 and SbFs [4].
These systems show the highest conductivities with a very large ani-
sotropy. Conduction takes places essentially in the charged graphite
layers.

Since these compounds are very different from simple metals the
question whether the reported conductivity is intrinsic or it could
be improved significantly (by improving the sample preparation or
the chemistry of the compounds) is of both practical and fundamental
importance. In the following we will study the problem of the calcu
lation by first principles of the conductivity of a charged graphite
layer. In particular the question of what is the theoretical maximum
conductivity for these compounds will be considered.

II. Variational Solution of Boltzmann Equation

The variational solution of Boltzmann equation has been discussed
by various authors [5]. Here we will write it in a form that is spe
cially simple for a physical interpretation of the various terms [6].
The resistivity (along the x-axis) is given by

p(T) = [e^ N(y) <vJ(M)> T(y,T)]"^ (1)
where Vx is the. x component of the electron band velocity, t is the
"transport" relaxation time ^5,63, y is the Fermi level, N is the
density of states and <•••> is the average over the Fermi surface.
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For the electron-phonon scattering it is convenient to write the
relaxation time t as the product of the asymptotic high temperature
expression t(ocT-1) divided a correction function F(T) that takes
care of the fact that the temperature is actually finite and not all
phonon states are populated.

T(y,T) = t/F(T) ̂  (2)

where

T = [1^ kgT (l-cose)> N(y)]~^ (3)
is given by the variational solution of Boltzmann equation tsl. Here
g^vi is the el-ph coupling in the notations of Ref. [73 and 9 is the
scattering angle between k and k'. The correction function F(T) is
[63

F(T) = (j^)^ (l-cose)G~^^ ̂  ̂q^(l-cos0) [u (q)] ^ (4)
B

G= (exp [•ftu(3)/kgT]-l|-ll-expf-fiwCqj/kgT]} ^ (5)
where q = k-k' and to is the phonon frequency. Of course for T <=°
we have F(T) 1.

For a single graphite layer the Fermi surface consists of circles
around the P (or K) points of the hexagonal Brillouin zone and the
band dispersion in the vicinity of these points is linear [8^. The
band energy is [93

£(k) = I Jo a -h k , (6)
where a = 1.428 is the distance between nearest carbon atoms and
Jq = 2.4 eV is the tight binding matrix element [lOQ . We only consi
der the scattering within the same circle (around a P point) ^6,93
and, of course, between states with the same,spin. Since the density
of states N refers to two circles and two spins an extra factor of
four goes into Eq. (3) when applied to this case. Specifying the
formulas for the case of the compound CsAsFs [43 (one graphite layer
per intercalate layer) and defining an asymptotic p as for t we have

,  (d+d')Trk Tfi . 2 V
p = p/F(T) = 9 2 2 <lgk,k- I , (7)

e  (J a) — ~ '
o

where d = 3.358 and d' = 4.958 are the thickness of a graphite and
an intercalate (ASF5) layer respectively. The problem is reduced
now to the evaluation of the electron-phonon coupling.

Ill. The Electron-Phonon Coupling in the Tight Binding Scheme

In this section we sketch the derivation of the electron-phonon
coupling within the tight binding framework. A more complete deriva
tion can be found in [9]. The reason for using a tight binding
description instead of the rigid ion model [ll3 is the following;
The rigid ion model arises from a description of a metal in terms of
a lattice of charged ions plus a gas of quasi free electrons. A
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phonon produces a distortion of the ionic lattice that gives rise to a
fluctuation in the charge density. This charge fluctuation, even
tually screened by the quasi-free electrons, is the source of scat
tering in the rigid ion model. The situation is quite different in
graphite because the it orbitals corresponding to the conduction band
are tightly bound to the carbon atoms [8]. A lattice distortion is
therefore expected to produce mainly a change in the overlap between
localized states and only to higher order the orbital relaxation
gives rise to a charge fluctuation. This naturally leads to a tight
binding approach as the correct starting point for the electron-
phonon coupling. Of course, as in band structure calculations, the
difference between the two methods (tight binding and rigid ion)
should be large when they are applied to lowest order and disappear
if a large basis set is used and orbital relaxation is fully inclu
ded.

The tight binding hamiltonian is written as

H =21 s n',s')an. s. (8)
n,n' »

s, s'

where n refers to the unit cell, s to the atom within the cell and
J is the tight binding matrix element between orbitals belonging to
nearest neighboring atoms. Expanding J to first order in the dis
tortion u -u , ,= 6(n,s; n',s') we have

—n,s —n ,s —

J = J + y 6 rvjl (9)
o  a L a Jo ,

a

where a indicates a direction (x,y,z) and J refers to the undis-
torted case. Writing then the distortion in terms of the phonon
coordinates and using the transformations that diagonalize the
unperturbed electronic hamiltonian one can obtain a general expres
sion for the electron-phonon coupling gj^ that we do not report
here for simplicity C^J. Specifying this expression for a
graphite layer and expanding in the vicinity of the P points we
obtain [9]

Jl(t) 12 [l'-' cos3 (<))+<(.•)] (10)k,k'| 32p^

for long wavelength longitudinal {i) and transverse (t) phonons
respectively (c=2.1xl0® cm/s is the average speed of sound). Here
Pjj is the 2-d mass density of graphite (p^=mQ • 3.82x10' ® cm~^) and
<))((()') is the angle corresponding to k(k'). The term q = [dJ(r)/drJ'
•Jq~' can be computed by writing J(r) in terms of Sla?er orbitals.
This gives qo = 2.52 Other methods to compute go (or to fit
it from other experiments) can also be used and give values between
2 and 32 ~ . We have then

<K,kP ^ (i-cose)>= 3!^ ( c° °) _
From eqs. (4,5,7,11) we obtain at T = 300°K, F(T = 300°K) = 1.5
and for the conductivity
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a(T = 300°K) = 7.5-10^(ficin)~^ (12)

This value, in good agreement with experiments [.1,4,63, shows that
the observed conductivites are already intrinsic and close to the
theoretical maximum for this class of systems. A more detailed
analysis of theory and experiments can be found in [6].

In addition to the conductivity there are other properties that
are affected by the electron-phonon interaction. One of these is the
variation of the in plane distance between carbon atoms (a) as a
function of the charge transfer. For this quantity we obtain the
following expression [12]

a = a + 6a (a = 1.422) (13)
o  o

(14)

where f^ is the charge transfer per carbon atom, = Pc/™ =
3.82 xlO^' cm~^ is the 2-d density of carbon atoms and n = 3.62x10®
dyn/cm is the carbon-carbon bond-stretching force constant [13^.
For fc .1 Eqs. (13,14) give 6a .GOSS in good agreement with
observations [143.
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