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The precursor effect of the Anderson localization
in two-dimensional metals, i.e. the logarithmic
correction term in the transport coefficients,

has been examined microscopically for conductivity,
Hall coefficient and Seebeck coefficient. Present
investigations include the effects of the
intervalley impurity scattering and the mutual
interactions between electrons. The results can
explain recent experimental findings in Si-MOS.

I. Introduction

Recent scaling theories by Abrahams et al. [1] and Anderson et
al. [2] indicate that two-dimensional metals are not truly metallic
in the sense that the conductivity, o, will not tend to a finite
value in the low temperature 1limit, but that o will always be
reduced as the temperature i1s lowered, logarithmically at first and
exponentially at low temperatures. The logarithmic corrections to
the metallic conductivity is given by

[1 - _a' n _E]
2WEFTO
where 0y=ERT e?/m and a' is some numerical constant of order unity.
Here ep, Tp gnd Te are the fermi energy, the relaxation time due to
impurity scattering and that due to inelastic scattering, respective-
ly. Later, microscopic calculations by Gorkov et al. [3] and by
Khmelnitzkii [4] based on diagram technique confirmed the result of
eq. (1). In their works processes contributingto the conductivity
are systematically analysed as a perturbational series with respect
to (EFTo)_l, whose leading term is the result of the Boltzmann
transport equation, o,, and the first correction is seen to include
the singular contribugion at low temperatures. The numerical
constant, a', is shown to be universal, o'=1l, in these investigations.
Experimentally the existence of such logarithmic correction to
the conductivity has been demonstrated in metallic films [5] and in
MOS [6]. 1In the case of MOS, Bishop, Tsui and Dynes [6] observed
the logarithmic increase of resistivity below Tnv1K even for electron
density of n=5.6x10'2cm~2%, which used to be classified as in
metallic regime. By assuming that t¢ in eq. (1) is inversely
proportional to some power, p, of temperature,t=T-P, they concluded
a'p/2=0.52+0.05. On the other hand Kawaguchi and Kawaji [7] investi-
gated this problem by use of magnetoresistance. They analyzed the
experimental data for samples with similar electron densities to
those of Bishop et al. based on the theoretical result by Hikami,
Larkin and Nagaoka [8], who examined the effect of magnetic fields
on the second term of eq. (1) and found anisotropic negative magneto-

o =0, ; (1)
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resistance. In this investigation, the magnetic field dependence
of the conductivity is fitted between theory and experiment (fitting
was done excellently) and a' and T, are determined separately.
Their results indicate that TemT'p with pg2 and o'/ny=a=0.25%0.35,
where ny is the valley degeneracy and ny=2 for (1,0,0) surface of the
experiment. Thus these experiments on MOS are consistent with each
other, and confirm the existence of the precursor effect of the
Anderson localization in two-dimension, i.e. logarithmic correction
to the conductivity in samples so far classified as metallic. The
prefactors of the logarithmic corrections in these experiments, how-
ever, are definitely smaller than the theoretical expectation of a=1.
In this paper we will resolve this discrepancy by taking into ac-
count of intervalley impurity scattering and the mutual interactions.

II. Effects of Intervalley Impurity Scattering

In the presence of ny equivalent valleys we will write the loga-
rithmic correction to conductivity as
T
e €
o' = = —=n_afn — . (2)
2TT2 v To

In Si(1,0,0) surface there exist two equivalent valleys. If these
two valleys are independent, we have ny=2 and a=1. In the presence
of intervalley impurity scattering, whose scattering rate is defined
as 1/2t1', o' is given as follows [9],

2 T i T
o' = - & (3 - a2+ D], (3)
™ v €

where Ty=(1-214/1'-1¢/1.)/(2/1'+1/1¢). If T'<<t¢ the second term
of eq. (3) does not have &nt. dependence, and the first term leads
to a conclusion nyo=1, i.e. 0=1/2. On the other hand we recover
nya=2 once Tg<<t'. Thus we can expect a change of a in the temper-
ature region of Tegvt'.

We also examined the case of Si(1l,1,1) surface. In this case,
nv=6 and we will have nva=6 if each valley is treated as independent.
However we found that nyoa=1 also in this case if the intervalley
impurity scattering 1s more frequent than the inelastic scattering,
which is possible in realistic systems [10]. Actually the ex-
periment by Kawaguchi et al. [11] on cesiated Si(1,1,1) surface
demonstrates the logarithmic temperature dependence of resistivity
whose prefactor is consistent with nva=1.

III. Effect of Mutual Interactions [12]

We considered the case of single kind of carriers and the effect
of four characteristic types of interactions, gy shown in Fig.l for

P, v N e W 3’.’. N "‘* ;J

Fig.l Contribution to the self-energy function in the linear order
of the mutual interactions: The broken and the double broken
lines represent particle-hole and particle-particle diffusion
processes
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self-energy functions where broken and double-broken lines are sum
of the ladder (i.e. diffusion) processes of particle-hole and
particle-particle. These processes lead to singular temperature
dependence in the relaxation time (in contrast to the case of non-
interacting systems) and in the conductivity.

1 1 g 1
= = = [1 + n ] )
2T 2TO 2nsFTO UWTOT 4
. Te g 1
0 =0, [1 - 5=—/—— tn—= - n 3 (5)
0 2ﬂeFTO T 2neFTO MNTOT !

where g=g;+g,-2(gs+gys). Since only the particle-particle diffusion
process is sensitive to magnetic fields, logarithmic contributions
except those from processes with g; and g3 are suppressed once
wcro>(eFro)'1 (wc=eH/mc), i.e.

81-285

2neFT0

[1 -

1 -1
0 n MnrOT] » W Tp>(epTy) T . (6)

Thus we see that mutual interactions affect the prefactor of the
logarithmic correction of conductivity and that the presence of g
and g3 leads to the difference in this prefactors deduced from the
temperature dependence on one hand and the magnetic field dependence
at a fixed temperature on the other hand.

Effect of mutual interactions on the density of states and the
conductivity have also been examined by Altschuler et al. [13], who
considered the processes corresponding to gi and g3 in the present
notation. They concluded that g; 1s more important than g;. Instead
of energy and momentum independent coupling constant g; they considered
that this is given by Coulomb interactions screened by polarization
process of diffusion type. By this treatment they concluded that
g1=1, i.e. independent of e?, and that this can be the origin of the
logarithmic temperature dependence of conductivity observed in the
experiment [6]. As is discussed, this process is insensitive to
magnetic fields and then magnetoresistance will not be present in
this treatment in contrast to the experimental findings [7].

IV. Hall Coefficient

In order to understand further the implication of the logarithmic
correction, we evaluated the Hall conductivity [14], Oxy> in the same
context. By use of the diagram technique to Oxy [15], we found
that

1 Te
o = 0,0, Ty [1 = 2X5=—— n —] (7)
Xy 0°c O 2ﬂ€FTO To <

and that the effective carrier number, ngee, deduced from the Hall
coefficient, R=oy,/Ho’=(n_ppec)~!, is equal to the actual carrier
number, n. This result is confirmed by Altshuler et al. [16]. Thus
the logarithmic correction is considered to be in the effective
relaxation time. This fact remains valid even if intervalley
impurity scatterings are taken into considerations [9].
Experimentally the Hall coefficient is found to be [17] constant
in the temperature region where the conductivity has logarithmic
dependence, in accordance with present theoretical result.

V. Seebeck Coefficient

The Seebeck coefficient (isothermal thermoelectric power), S, is
given by S=B/0T where B is the correlation function between heat
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current and the electric current. Microscopic calculations of this
correlation function shows that B does not have leading logarithmic
correction and then we have

S/8;y = 05/9,
where So=w2T/3eeF is the result of the Boltzmann transport equation.

VI. Conclusion

Recent experiments on the temperature dependences of the conduc-
tivity, the magnetoresistance and the Hall effect in Si-MOS have
observed the precursor effect of Anderson localization in two-
dimension. The correspondence between theory and experiment is seen
to be satisfactory if the intervalley impurity scattering is taken
into account. The possibility of roles (but relatively minor) played
by mutual interactions 1is discussed.
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