Raman Scattering Studies on $Sr_2Nb_2O_7$ and $Sr_2Ta_2O_7$

Seiji KOJIMA*, Kikuo OHI[†] and Terutaro NAKAMURA

The Institute for Solid State Physics, The University of Tokyo, Roppongi, Minato-ku Tokyo 106 [†]School of Science and Engineering, Waseda university, Shin-ohkubo, Shinjuku-ku, Tokyo 160

New structural phase transitions were recently found in $Sr_2Nb_2O_7$ and $Sr_2Ta_2O_7$,^{1,2)} $A_2B_2O_7$ -type compounds of perovskite slab

Fig. 1. Frequency shifts of the soft mode in $Sr_2Nb_2O_7$ observed by the scattering geometry $b(cc)\overline{b}$.

Fig. 2. Frequency shifts of the soft mode in $Sr_2Ta_2O_7$ observed by the scattering geometry b(cc)a.

structure. Electron-microscopic investigations found²⁾ that (1) Sr₂Nb₂O₇, of which point group is *mm2* in the high-temperature phase, transforms into the incommensurate structure modurated with a wave vector $\mathbf{k} = \pm (1-\delta)\frac{1}{2}a^*$ at about 220°C. (2) Sr₂Ta₂O₇, of which point group is *mmm* in the high-temperature phase, transforms into a supperlattice structure of point group 2/*m* modurated with a wave vector $\mathbf{k} = \pm \frac{1}{2}a^*$ at about 170°C. In the present work, these transitions are investigated by Raman Scattering measurements.

In the incommensurate phase below about 220° C of Sr₂Nb₂O₇, the soft optic mode, of which frequency decreases toward 215° C, has been observed in the scattering geometry $b(cc)\overline{b}$ as shown in Fig. 1. The level repulsion and the intensity transfor between the soft mode and another low frequency mode are clearly observed.

In the low temperature phase below about 170° C of Sr₂Ta₂O₇, the low frequency A_g-symmetry mode, of which frequency decreases toward 170° C, has been observed in the scattering geometry b(cc)a as shown in Fig. 2.

References

- K. Ohi, M. Kimura, H. Ishida and H. Kakinuma: J. Phys. Soc. Jpn. 46 (1979) 1387.
- N. Yamamoto, K. Yagi, G. Honjo, M. Kimura and T. Kawamura: J. Phys. Soc. Jpn. 48 (1980) 185.

* Present address: Institute of Applied Physics, University of Tsukuba, Sakura, Ibaraki 305.