The Study of the Structural Phase Transitions in ABCl₃ Single Crystals

K. ALEKSANDROV, A. ANISTRATOV, B. BEZNOSIKOV, V. ZINENKO and I. FLEROV

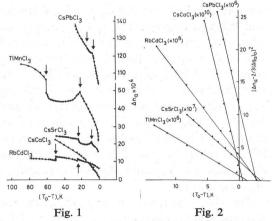
L. V. Kirensky Institute of Physics, Academy of Sciences of the USSR, Siberian Branch, 660036 Krasnoyarsk, USSR

The birefringence of some $ABCl_3$ crystals in the phase transition regions was studied. An analysis of the data is carried out within the Landau theory. Comparison of optical data with those of heat capacity and elasticity is made. The coefficients of a thermodynamical potential are determined. It is shown that the theory satisfactorily describes the structural phase transitions in $ABCl_3$ crystals.

§1. Introduction

Over the last few years there has been a growth of interest for the structural phase transitions (PT) in ABX₃ crystals (A, B-cations, X-halogen, oxygen). Among the oxide members of this family there are some ferroelectrics which are used as optoelectronic elements.¹⁾ The halide compounds undergo nonferroelectric PTs. The study of such transitions (complicated by the difficulties of PT parameter measurements)²⁾ is important from the view point of general problem on PTs. Some ABCl₃ crystals are acousto-optic materials of interest.³⁾

The temperature dependence of a PT parameter can be obtained from the birefringence measurements.⁴⁾ It has been shown that the birefringence of ABO₃ ferroelectrics is determined by spontaneous electro-optic effect.⁵⁾ It is worthwhile to carry out a systematic study of the birefringence behaviour in ABX₃ crystals and to compare the data with the Landau theory.⁶⁾


The measurements of the birefringence in $SrTiO_3$,⁷⁾ KMnF₃,⁴⁾ CsPbCl₃^{3,8)} have led to the conclusion that the critical index of a PT parameter differs from the mean field value $\beta = 1/2$, but equals to about 1/3. Some authors explain these discrepancies as a consequence of the critical phenomena.^{4, 7, 9)}

§2. Experiment and Discussion

In the present paper the birefringence of some ABCl₃ crystals in the PT regions was studied. Except RbMnCl₃, all crystals under study belong to the perovskite structure and undergo the successive PTs $O_h^1 \rightarrow G_1 \rightarrow G_2 \rightarrow G_3$ (only $O_h^1 \rightarrow G_1$ PT in CsCaCl₃ was observed).³⁾ The nature of these antiferrodistortive PTs is connected with the instability of the cubic $ABCl_3$ lattice in respect to soft modes at the boundary points M and R of the Brillouin zone. Structure of the crystals is slightly distorted as compared with the ideal cubic structure. The distortions are determined by the tilts of BCl_6 octahedra about different axes of the initial cubic cell. The tilt angle of BCl_6 tilts can be considered as a thermodynamical PT parameter.¹⁰

The birefringence measurements were made along the pseudocubic directions [100] by Berek and Senarmont compensators with single domain samples or on untwinned part of a sample (Fig. 1).³⁾ The PT sequence of the first, the second and the first order is observed. The PT temperatures are shown in Table I.

The thermodynamical potential of the PTs in halide ABX_3 perovskites was considered elsewhere.¹¹⁾ It is given for two independent PT

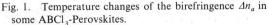


Fig. 2. The dependences of $[\Delta n_a - 2/3(\Delta n_a)_0]^2$ vs $(T_0 - T)$ in ABCl₃ crystals.

Crystal	<i>T</i> ₁ (K)	T ₂ (K)	Т ₃ (К)	$(\Delta n_a)_0 \cdot 10^4$	$\frac{q \cdot 10^4}{(\text{grade}^{-2})}$	$(B/C) \cdot 10^{17}$ (cm ²)	$(B/A_{\rm T}) \cdot 10^{-18}$ (cm ⁻² · K)	$\begin{array}{c}T_0 - T_c\\(\mathbf{K})\end{array}$	$\begin{array}{c}T_{\rm cr}-T_0\\(\rm K)\end{array}$	Reference
CsPbCl ₃	320	315	310	104	3.18	-0.9	-3.5	7.8	2.6	this work
						-0.26	-7.5	12.8	4.3	(16)
TlMnCl ₃	296	275	234	24	0.66	-0.9	-1.7	3.9	1.3	this work
						-0.8	-1.6	8.8	2.9	(15)
CsSrCl ₃	385	377	362	16	0.60	-1.3	-2.9	9.6	3.1	this work
RbCdCl ₃	385	361	339	5	0.40	-0.25	-10.9	6.8	2.2	this work
CsCaCl ₃	95			0.4	0.6	-0.03	-16	1.2	0.4	this work
KMnF ₃	186	95		1.7	0.62	-0.1	-0.4	6.1	0.03	(3)
RbCaF ₃	196			2.2	0.6	-0.15	-0.27	0.1	0.03	(18, 19)

Table I. The thermodynamical characteristics of $O_h^1 \rightarrow G_1$ PTs in ABX₃ crystals.

parameters η_i and ξ_i (*i*=1, 2, 3) associated with BX₆ tilts at the condensation of the modes M₃ and R₂₅. The experimental data lack for the analysis of the PT sequence. Therefore it is reasonable to restrict the consideration to O¹_h \rightarrow G₁ PTs.

If $O_h^1 \rightarrow G_1$ PT to tetragonal phase (for example, into D_{4h}^5 or D_{4h}^{18} space group)²⁾ takes place, one component of the PT parameter η_3 or ξ_3 is not equal to zero. Then the thermodynamical potential¹¹⁾ of $O_h^1 \rightarrow D_{4h}^5$ PT without the cross-terms of η_3 and the mechanical strain can be written as

$$\phi = \phi_0 + A_{\rm T} (T - T_{\rm c}) \eta^2 + B \eta^4 + C \eta^6 + \dots (1)$$

Here $\eta \equiv \eta_3$, A_T , B, C are the potential constants, T_c —the Curie temperature. The last term is included into the expansion because of the possibility of PTs close to critical point. The temperature dependence of η near the first order PT (B < 0) can be found by usual way

$$\eta^{2} = \frac{2}{3\eta_{0}^{2} + \frac{1}{3\eta_{0}^{2}}} \times [1 + 3(T_{0} - T)(T_{0} - T_{c})^{-1}]^{1/2}$$
(2)

where η_0 -the jump of η at the transition point T_0 ; η_0 and $(T_0 - T_c)$ are determined by the relations:

 $\eta_0^2 = -(B/2C), (T_0 - T_c) = B^2/4A_{\rm T}C.^{6,12}$

The birefringence changes in G_1 phase are due to PT parameter η and the spontaneous strain $x_s^{(8)}$

$$\Delta n_a = n_b - n_c = 1/2n_0^3 [D\eta^2 + (p_{11} - p_{12})x_s] (3)$$

Here n_0 -refraction index; p_{11} , p_{12} -elastooptic constants of O_h^1 phase. At the small tilts of BX₆ octahedra it can be approximately put: $\eta \approx (a/2)$ φ and $x_s = (c/a) - 1 \approx \varphi^2/2$,¹³⁾ where a and c-unit cell parameters, φ -tilt angle. Then the expression (3) can be transformed to

$$\Delta n_a = n_b - n_c = 1/4n_0^3 \left[D \frac{a^2}{2} + (p_{11} - p_{12}) \right] \varphi^2$$

= 1/4n_0^3 q \varphi^2 (4)

The equation (4) describes the birefringence changes at the structural PTs in ABX_3 perovskites. It is similar to the expression for the spontaneous electro-optical effect of ABO_3 ferroelectrics.⁵⁾ The coefficient q was determined

Table II. The coefficients of the thermodynamical potential of ABX₃ crystals.

Crystal	a (Å)	n_0^3		$A_{\rm T} \cdot 10^{-22}$ (erg · cm ⁻⁵ · K ⁻¹)			$\omega_k^2 \cdot 10^{3*}$ (cm ⁻²)	Reference
CsPbCl ₃	5.605	7.4	0.169	1.8	-6.3	7.0	2.4	(16)
				1.2	-9.0	34.0	2.9	this work
TlMnCl ₃	5.25	7.3	0.098	0.56	-0.95	1.06	0.7	this work
				0.75	-1.7	1.1		
CsCaCl ₃	5.396	4.1	0.118	19.8	-317.3	10576	23.9	this work
KMnF ₃	4.190	3.04	1.444	3.1	-1.24	12.4	3.3	this work
				10.8	-95.0	700	11	(15)
	a = 7.16							
RbMnCl ₃	c = 17.8	4.97	0.029	30.9	4500			this work

*) For $T - T_c = 40 \text{ K}$

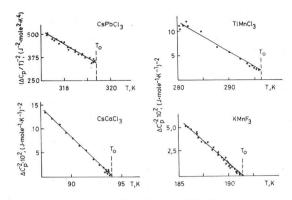


Fig. 3. Temperature dependences of the heat capacity in some ABX₃ crystals.

with help of corrected X-ray data.¹⁴⁾ It is nearly the same for all crystals under study, except CsPbCl₃ (Table I).

Taking in account $|\eta| \sim |\phi|$ and equation (4) the temperature dependence of birefringence is determined by the equation (3) with the substitutions $\eta^2 \rightarrow (\Delta n_a)^2$ and $\eta_0^2 \rightarrow (\Delta n_a)_0^2$. The birefringence jump at T_0 is equal to $(\Delta n_2)_0 = 1/4n_0^3$. $q\varphi_0^2$. By plotting the experimental data of $[\Delta n_a]$ $-2/3(\Delta n_a)_0]^2$ versus $(T_0 - T)$ (Fig. 2) the values B/C, $B/A_{\rm T}$ and $(T_0 - T_c)$ were found (Table I). We can conclude that the thermodynamical theory satisfactorily describes the behaviour of crystals in G₁-phases. The nearness of PT to the critical point can be estimated by means of criterion $T_{\rm er} - T_0 = B^2/12A_{\rm T}C^{1.5}$ The PTs in ABCl₃ crystals are rather close to the critical point (Table I). It seems that it is the reason why the β -index deviates from the classical value $\beta = 0.5^{3}$

Numerical values of the potential constants obtained from the birefringence measurements are in agreement with those for CsPbCl₃ and TlMnCl₃ which are evaluated from the elasticity¹⁶⁾ and heat capacity data.¹⁵⁾ To calculate $A_{\rm T}$, *B* and *C* values it is necessary to use the birefringence data and for example heat capacity ones. The data of ref. (15) were used.

The theory⁶⁾ also explains satisfactorily the properties of some ABF₃ perovskites, for example, KMnF₃ and RbCaF₃.^{3,4,17,18)} The esti-

mations showed that the PTs of these crystals are more close to the critical point than those of ABCl₃ (Table I).

RbMnCl₃ has the structure related to perovskite. PT $D_{6h}^4 \rightarrow C_{2h}^2$ of the second order takes place at 272 K without the change of the unit cell.¹⁹⁾ The thermodynamical evaluations for RbMnCl₃ were also made and the results are shown in Table I.

References

- F. Ainger: Abstr. of 4th European Meet. on Ferroelectricity, p. 303, Ljubljana, 1979.
- K. Aleksandrov, L. Pozdnyakova and T. Orlova: Kristallografiya 22 (1977) 93.
- K. Aleksandrov, A. Anistratov, S. Melnikova, V. Zinenko, L. Shabanova and B. Beznosikov: Ferroelectrics 20 (1978) 305.
- S. Sawada, S. Hirotsu, T. Suzuki, M. Takashige and I. Shiroishi: Izv. Akad. Nauk SSSR Ser. Fiz. 41 (1977) 501.
- M. DiDomenico and S. Wemple: J. Appl. Phys. 40 (1969) 720.
- L. Landau and E. Lifshitz: Statistich. fizika, Nauka, (1964), p. 501.
- 7) E. Courtens: Phys. Rev. Lett. 29 (1972) 1380.
- S. Melnikova, K. Aleksandrov, A. Anistratov and B. Beznosikov: Fiz. Tverd. Tela 19 (1977) 34.
- K. Müller and W. Berlinger: Phys. Rev. Lett. 26 (1971) 13.
- 10) K. Aleksandrov: Ferroelectrics 20 (1978) 60.
- K. Aleksandrov and V. Zinenko: Fasovye perekhody v krist., L. V. Kirensky Inst. of Phys., (1975), p. 3–68.
- 12) E. Banda, R. Graven, E. Parks, P. Horn and M. Blum: Solid State Commun. **17** (1975) 11.
- K. Aleksandrov and B. Beznosikov: Fasovye perekhody v krist., L. V. Kirensky Inst. of Phys., (1975), p. 68-129.
- L. Pozdnyakova: PhD. thesis, L. V. Kirensky Inst. of Phys., (1978), p. 14-21.
- 15) K. Aleksandrov and I. Flerov: Fiz. Tverd. Tela 21 (1979) 327.
- V. Zinenko, A. Kruphy and L. Pozdnyakova: Kristallografiya 22 (1977) 1015.
- J. Bates, R. Major and F. Modine: Solid State Commun. 17 (1975) 1347.
- A. Bulou, H. Theveneau, A. Trokiner and P. Papon: J. Phys. Lett. 40 (1979) 277.
- K. Aleksandrov, A. Anistratov, S. Melnikova, V. Zinenko, L. Shabanova and A. Shefer: Fiz. Tverd. Tela 21 (1979) 1119.