Incommensurate-Ferroelastic (Commensurate) Phase Transition in $\{N(CH_3)_4\}_2CuCl_4$

Akikatsu Sawada, Jun Sugiyama, Mitsuo Wada and Yoshihiro Ishibashi

Synthetic Crystal Research Laboratory, Faculty of Engineering, Nagoya University, Chikusa-ku, Nagoya 464

Incommensurate (IC)-monoclinic (ferroelastic) phase transition in $\{N(CH_3)_4\}_2$ CuCl₄ crystal has been studied by means of dielectric and ultrasonic methods. The elastic constant c_{55} has been found to show a remarkable softening in the IC phase towards the IC-monoclinic transition temperature T_2 . The result is discussed on the basis of a thermodynamic theory, and the distinctions between the IC-ferroelastic transition and the IC-ferroelectric transition are pointed out.

§1. Introduction

Much attention has been paid to various crystals having the β -K₂SO₄ structure from the view point of the incommensurate (IC)commensurate (C) phase transition. Very recently it was found by our group¹⁾ and by Gesi and Iizumi²⁾ that $\{N(CH_3)_4\}_2CuCl_4$ crystal undergoes the successive phase transitions from the normal phase $(D_{2h}^{16} - Pmcn, Z=4)$ to the IC phase at $T_1 = 24^{\circ}$ C, and then at $T_2 = 18^{\circ}$ C to the monoclinic commensurate phase $(C_{2h}^5 P12_1/c1$, Z=12) with the lattice parameter tripled along the $c_{\rm H}$ -axis compared with that of the normal phase. The C phase in ${N(CH_3)_4}_2CuCl_4$ is shown to be ferroelastic.¹⁾ This IC-ferroelastic transition makes a contrast with the wellknown IC-ferroelectric transition. On further cooling $\{N(CH_3)_4\}_2CuCl_4$ crystal undergoes the third phase transition at $T_3 =$ -10° C and changes into another monoclinic phase $(C_{2h}^5 - P_{112_1}/m, Z = 4)$, which has no superlattice structure (Table I).

The purpose of the present paper is to report the detailed studies of dielectric and ultrasonic properties in $\{N(CH_3)_4\}_2CuCl_4$ crystal with special attention to the normal-IC transition at T_1 and the IC-C transition at T_2 .

§2. Experimental Results

Single crystals of $\{N(CH_3)_4\}_2CuCl_4$ were grown by the slow evaporation at 30°C from aqueous solution which contained stoichiometric molar ratio of $N(CH_3)_4Cl$ and $CuCl_2 \cdot 2H_2O$. Grown crystals are transparent, orange and of hexagonal prism in form.

The dielectric constant was measured at 1 KHz by using a high-precision capacitance bridge. Sample plates were polished with ethanol, and carbon paste (Dotite XC-12) was painted on their faces as electrodes. The dielectric constant ε_{aH} along the a_{H} axis shows slight but clear changes of slope both at the normal-IC transition temperature T_1 and at the IC-C (ferroelastic) transition temperature T_2 (Fig. 1). At T_3 , the dielectric constant ε_{aH} decreases discontinuously.

The measurement of sound velocity was made by the pulse-echo method. PZT transducers (f=3.3 MHz) were bonded to speci-

	1 (- (3/4) 24							
12	ai man a dhadh	$T_3 = -10$ T_2		$T_2 = 18$	$=18$ $T_1=2$		24 (°C)	
(ne A) Leona	IV		III	la Re Selation	II		Ι	
	Ferroelastic		Ferroelastic		Paraelastic		Paraelastic	
	$C_{2h}^{5} - P112_{1}/n$		$C_{2h}^{5} - P12_{1}/c1$				$D_{2h}^{16}-Pmcn$	
	(Z = 4)		(Z = 12)		$c \approx 3c_{\rm H}$		(Z = 4)	
	in the second	C	ommensurate		Incommensurat	e	Prototype	

Table I. Phase sequence in $\{N(CH_3)_4\}_2CuCl_4$

Fig. 1. Temperature dependence of the dielectric constant ε_{aH} in {N(CH₃)₄}₂CuCl₄.

mens with resin. In order to obtain the shear elastic constant c_{55} , a transverse ultrasonic wave propagating along the $a_{\rm H}$ axis with its polarization along the $c_{\rm H}$ axis was studied. The temperature dependence of the elastic constant c_{55} of {N(CH₃)₄}₂CuCl₄ is shown in Fig. 2, where the value of crystal density $\rho = 1.38 \text{ g/cm}^3$ is used. The elastic constant c_{55} shows a clear change in slope at T_1 , and decreases rapidly and then tends to vanish towards the IC-C (monoclinic) transition temperature T_2 in the IC phase. In the C phase between T_2 and T_3 no echos could be observed, probably due to the appearance of ferroelastic domains. In the phase IV below T_3 ultrasonic echos were again observed.

§3. Discussions

As is shown in the above, one of the characteristic features of the IC-ferroelastic phase transition in $\{N(CH_3)_4\}_2CuCl_4$ is that the elastic constant c_{55} tends to vanish towards the ICferroelastic transition temperature. This fact can be understood on the basis of the thermody-

Fig. 2. Temperature dependence of the elastic constant c_{55} in {N(CH₃)₄}₂CuCl₄.

namic theory as follows.

Let us assume that the free energy in the IC phase can be written as

$$F_{\rm IC} = \omega_k^2 Q_k Q_k^* + \frac{1}{4} \beta (Q_k Q_k^*)^2 + \frac{1}{36} \gamma (Q_k Q_k^*)^3 + b_K P_K P_K^* + \frac{1}{6} f_1 (Q_k^3 P_K + Q_k^{*3} P_K^*) + c_K x_K x_K^* + \frac{1}{6} g_1 (Q_k^3 x_K - Q_k^{*3} x_K^*) + \frac{1}{2} b_0 P_0^2 + \frac{1}{2} f_2 Q_k Q_k^* P_0^2 + \frac{1}{2} c_0 x_0^2 + \frac{1}{2} g_2 Q_k Q_k^* x_0^2,$$
(3)

where Q_k is the primary order parameter belonging to the Σ_2 irreducible representation, and the polarization wave P_K and strain wave x_K with the wave vector $K=3(k_c-k)$ are included as the secondary order parameters. P_0 is the homogeneous polarization along the a_H axis, and x_0 is the homogeneous strain corresponding to shear strain x_5 .

From eq. (3) we can expect that at the normal-IC transition temperature T_1 the dielectric constant ε_{aH} and the elastic constant c_{55} should show kinks as expressed by

$$\Delta \varepsilon_{aH} \propto f_2 < Q_{k_i} > 2,$$

$$\Delta c_{55} \propto g_2 < Q_{k_i} > 2,$$
 (4)

where k_i is the wave vector of the frozen-in mode. This is in agreement with the experimental results (Figs. 1 and 2).

When the temperature is slightly lowered from T_1 , we can expect by following the procedures adopted by Dvorak and Petzelt,⁴⁾ that the elastic constant c_{55} (T) should be written in the harmonic approximation as

$$c_{55}(T) = c_0 - \frac{g_1^2}{4} < Q_{k_i} > 4 \left(\frac{1}{\Omega_p^2(K_i)} + \frac{1}{\Omega_A^2(K_i)} \right),$$
(5)

where $\Omega_p^2(K_i)$ and $\Omega_A^2(K_i)$ are the frequencies of the phase mode and amplitude mode with the wave vector $K_i = 3(k_c - k_i)$, respectively. It is seen from eq. (5) that the elastic constant $c_{55}(T)$ should decrease, as the phason frequency $\Omega_p^2(K_i)$ tends to decrease as T_2 is approached. Thus the elastic softening associated with the IC-ferroelastic transition can in this approximation be understood as a result of the coupling of the elastic strain x_0 mainly with the phason mode with the wave vector K_i .

Near the IC-ferroelastic transition point T_2 the crystal is considered to become a domainlike structure having both positive and negative strain regions which are separated by so-called discommensuration. It can be expected that the elastic constant in such state may be small, since the change of the domain width takes place easily under external stress near T_2 .

In summary, we have presented in this paper the evidence of elastic softening associated with the IC-ferroelastic transition, corresponding to dielectric softening in the case of the IC-ferroelectric transition.

References

- 1) A. Sawada, J. Sugiyama, M. Wada and Y. Ishibashi: J. Phys. Soc. Jpn. 48 (1980) 1773.
- K. Gesi and M. Iizumi: J. Phys. Soc. Jpn. 48 (1980) 1775.
- 3) M. Iizumi, J. D. Axe, G. Shirane and K. Shimaoka : Phys. Rev. **B15** (1977) 4392.
- 4) V. Dvorak and J. Petzelt: J. Phys. C11 (1978) 4827.