Structural Phase Transition in Sr₂Nb₂O₇

Kikuo OHI, Yukikuni AKISHIGE and Masaki HOTTA

Department of Physics, School of Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo 160

Strontium niobate $(Sr_2Nb_2O_7)$ is ferroelectric below the Curie temperature at 1342°C and has an incommensurate structure below 220°C.¹⁾ In this report, we present the elastic and dielectric properties of $Sr_2Nb_2O_7$ and ESR study of the Fe doped crystal around the normal-incommensurate phase transition temperature.

The elastic compliance coefficients s_{11}^E and s_{22}^E have step like anomalies,²⁾ which are explained by the coupling between the incommensurate order parameter Q and the strain component x_i in the form QQ^*x_i . The dielectric constant ε_{33} has a small peak at the transition temperature.

Figure 1 shows angular dependence of ESR line in Sr₂Nb₂O₇: Fe at 230°C obtained by an xband spectrometer. It seems that the lines correspond to the transition $M_s = 1/2 \leftarrow -1/2$ of Fe³⁺ ion in the strong orthorhombic field. The rotation spectrum can be analyzed in terms of the following spin Hamiltonian,

$$H_{s} = \beta HgS + D\left(S_{z}^{2} - \frac{1}{3} \cdot S \cdot (S+1)\right) + E(S_{x}^{2} - S_{y}^{2}).$$

The g tensor is assumed to be isotropic. The best fit parameters are as follows, |2D|=0.63 $\pm 0.02 \text{ cm}^{-1}, |E| = (2.54 \pm 0.02) \times 10^{-2} \text{ cm}^{-1}, \phi$ $= 54.0 \pm 0.5$ deg., where ϕ is the angle between the principal axis z and the c-axis in the (100) plane. The principal axis x is parallel to the aaxis.³) The calculated lines are shown in Fig. 1 by solid lines. The signs of D and E are not clear but they have opposite signs. The D value is several times as large as that of BaTiO₃ in the tetragonal and the orthorhombic phase,⁴) but it is one fourth as large as that of Fe³⁺-V₀ in SrTiO₃.⁵) This result indicates that Fe³⁺ ion is sitting off the center of distorted octahedron of

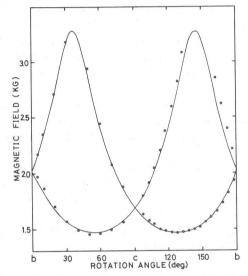


Fig. 1. Angular dependence of ESR lines of $Sr_2Nb_2O_7$: Fe at 230°C. Solid lines represent the values calculated by using the parameters described in the text.

oxygen ions. The principal axis z coincides with the direction of $Nb(2)-O(2)^{3}$ within the experimental error. Therefore, it is assigned that Fe^{3+} ion substitutes on Nb (2) site.

Below 220°C the ESR line splits into two lines, which correspond to two different Nb (2) sites in the incommensurate phase.

The ESR linewidth of 55 gauss at 280° C increases with decreasing temperature and it reaches 95 gauss at the transition point.

References

- 1) N. Yamamoto, K. Yagi, G. Honjo, M. Kimura and T. Kawamura: J. Phys. Soc. Jpn. 48 (1980) 185.
- K. Ohi, M. Kimura, H. Ishida and H. Kakinuma: J. Phys. Soc. Jpn. 46 (1979) 1387.
- 3) N. Ishizawa, F. Marumo, T. Kawamura and M. Kimura: Acta Cryst. B31 (1975) 1932.
- 4) T. Sakudo: J. Phys: Soc. Jpn. 18 (1963) 1626.
- Th. von Waldkirch, K. A. Müller and W. Berlinger: Phys. Rev. B5 (1972) 4324.