Dielectric Critical Slowing-Down and Some Related Properties in RbH₃(SeO₃)₂

Yasuharu Makita, Makita Tsukui, Minoru Sumita,[†] Yasuo Oshino and Chiharu Takei

Faculty of Science, Science University of Tokyo Kagurazaka, Shinjuku-ku, Tokyo 162 [†]Faculty of General Education, Shibaura Institute of Technology Fukasaku, Omiya, Saitama, 330

Dielectric, ultrasonic, thermal and X-ray measurements for $\text{RbH}_3(\text{SeO}_3)_2$ were made near the ferroelectric transition temperature T_c . $\text{RbH}_3(\text{SeO}_3)_2$ exhibits anomalies in the ultrasonic velocities and in the specific heat both at $T_i = (2.2^\circ\text{C} + T_c)$, the upper transition temperature and T_c . X-ray examinations confirmed an incommensurate nature of the intermediate phase below T_i . The dielectric results obtained above T_c in a frequency range between 3 MHz and 1000 MHz show critical slowing-down of the relaxation time, which is suggested to be originated from discommensuration of the incommensurate phase.

Because of unusual dielectric properties of rubidium trihydrogen selenite, RbH₃(SeO₃)₂, such as a small peak of the dielectric constant at the ferroelectric transition temperature $T_{\rm c}$ and extremely small spontaneous polarization below $T_{c}^{(1)}$ many investigations²⁻⁴ have been made to understand its ferroelectric transition mechanism. Dvorak²⁾ and Sanikov et al.³⁾ analyzed irreducible representations of RbH₃(SeO₃)₂ for the ferroelectric phase transition, and the latter authors discussed a possibility of an intermediate incommensurate phase of $RbH_3(SeO_3)_2$ just above T_c . Recently Gladkii et al.5) found a small anomaly in the elastic compliance s_{55}^{E} at about 2 K above T_{c} and attributed the anomaly to an incommensurate to the paraelectric (commensurate) phase transition. Very recently Gesi et al.⁶⁾ made neutron diffraction study of the deuterated crystal $RbD_3(SeO_3)_2$ and reported an incommensurate nature of the intermediate phase.

We have recently measured for $RbH_3(SeO_3)_2$

(1) the ultrasonic velocities of both longitudinal and transverse waves v_i ($i=1, 2, \dots, 6$) and absorption coefficients α_{ii} (i=1, 2, 3),

(2) the specific heat,

(3) the complex dielectric constant at frequencies below 1000 MHz, and examined

(4) incommensurate nature by the X-ray diffractometer.

The results of (1) and (3) were shortly reported elswhere.^{7,8)}

The results of the ultrasonic velocities of the longitudinal waves v_i (i=1, 2, 3) and of the transverse waves v_i (i=4, 5, 6) are shown in Fig. 1. All the ultrasonic velocities v_i 's except v_6 show anomalies both at ($2.2^{\circ}C + T_c$) and at T_c . In what follows, the temperature of ($2.2^{\circ}C + T_c$) is denoted as the incommensurate to the paraelectric (commensurate) phase transition tem-

Fig. 1. Sound velocities vs temperature curves. q and ξ show the wave vector and the polarization vector, respectively.

perature T_i , because of the appearance of incommensurate nature of the intermediate phase as will be mentioned below. Figure 2 demonstrates the temperature dependence of v_3 and α_{33} in the very vicinity of T_i , as an example of the results showing the anomalies in v_i 's at T_c and T_i . It is noted that the anomalous parts of the observed velocities and absorption coefficients, $\Delta v_i = (v_i^0 - v_i)$ and $\Delta \alpha_{ii}$ (i=1, 2, 3), all show a tendency to diverge at T_i . The normal part of the velocity v_i^0 near T_i is obtained by extrapolating v_i vs T curve in the high temperature range above T_i to low temperature.

The more direct evidence for the existence of the intermediate phase was obtained by the measurement of the specific heat C_p , the result of which is shown in Fig. 3. The total transition entropy ΔS_t associated with both the lower (ferroelectric) and upper (incommensurate to paraelectric) phase transitions was estimated to be 0.12 cal/mol · deg.

The temperature dependence of the real and imaginary parts of the complex dielectric constant along the *b* axis, ε'_b and ε''_b , measured at various frequencies between 3 MHz and 1000 MHz are illustrated in Fig. 4. The results shown in the figure demonstrate the dielectric dispersion observed near T_c . The real part ε'_b measured at each frequency except 3 MHz and

Fig. 2. Sound velocity v_3 and absorption coefficient α_{33} of the longitudinal wave with the wave vector q//[001] and the polarization vector $\xi//[001]$ neat T_i .

Fig. 3. The specific heat as a function of temperature.

Fig. 4. The real and imaginary parts of the complex dielectric constant, ε'_{b} and ε''_{b} , neat T_{c} .

1000 MHz indicates a discontinuous change in value at T_c , indicating that the ferroelectric transition of RbH₃(SeO₃)₂ at T_c is of first order. Examination of the dielectric result by the Cole-Cole relation, $\varepsilon(\omega) - \varepsilon(\infty) = {\varepsilon(0) - \varepsilon(\infty)}/{1 + (i\omega\tau)^{\beta}}$, indicates that the value of a measure of the width of the distribution of relaxation times, β , falled into a range $0.9 < \beta < 1$ with uncertainty $\Delta\beta = 0.1$. The relaxation time obtained in the incommensurate phase shows critical slowing-down with a value of 1.7×10^{-9} sec just above T_c . However, RbH₃(SeO₃)₂ can be regarded as of the displacive type by the observation of a

zone-boundary soft phonon mode,⁹⁾ for which the dielectric dispersion is expected to arise at frequencies of the order of lattice vibrations. The relaxation frequencies actually observed in $RbH_3(SeO_3)_2$ are too low to attribute to those of the lattice vibrations.

According to McMillan,¹⁰⁾ in the vicinity of T_c in the incommensurate phase the crystal has a domain-like structure with discommensuration. The discommensuration distance increases as T_c is approached from above. It is therefore suggested that the critical slowing-down observed in RbH₃(SeO₃)₂ near T_c may be due to the relaxation of polarization contributed from the domain-wall-like movement of discommensuration.

Incommensurate nature of the intermediate phase of $\text{RbH}_3(\text{SeO}_3)_2$ reported by Gesi *et al.* was confirmed by the X-ray examination. The results of X-ray and neutron⁶ diffractions thus

support the explanation for the origin of the observed critical slowing-down.

References

- L. A. Shuvalov, N. R. Ivanov, N. V. Gordeeva and L. F. Kirpichnikova: Sov. Phys.-Crystallogr. 14 (1970) 554.
- 2) V. Dvorak: Phys. Status Solidi b 51 (1972) K129.
- D. G. Sannikov and A. P. Levanyuk : Sov. Phys.-Solid State 19 (1977) 67.
- 4) Y. Makita and S. Suzuki: J. Phys. Soc. Jpn. 36 (1974) 1215.
- V. V. Gladkii, V. A. Kirikov, V. K. Magataev and L. A. Shuvalov: Sov. Phys.-Solid State 19 (1977) 167.
- K. Gesi and M. Iizumi: J. Phys. Soc. Jpn. 48 (1980) 697.
- C. Takei and Y. Makita: J. Phys. Soc. Jpn. 49 (1980) 425.
- M. Tsukui, M. Sumita and Y. Makita: J. Phys. Soc. Jpn. 49 (1980) 427.
- H. Grimm and W. J. Fitzgerald : J. Phys. C 11 (1978) 829.
- 10) W. L. McMillan: Phys. Rev. B14 (1976) 1496.