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The static behaviour of an "easy-plane" tetragonal ferroelectric near the incom-
mensurate phase transition point is considered. It is shown that the critical fluctuations
may turn the continuous transition into the first-order one provided the crystal
anisotropy is sufficiently large. It is also found that the dipolar interaction and the
coupling of the order parameter to elastic strains suppress the critical fluctuations
extending the region of validity of the Landau theory results (modified by some
logarithmic factors).

In this report we consider the critical be- the Hamiltonian (l) takes the form
haviour of the model describing the phase tran-
sition in a tetragonal crystal having no center of H:L
symmetry. This model has been introduced flrst tt {)r"e*r'ur-@)E.G 
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by Levanyuk and Sannikovl)to explain the
dielectric anomalies in (NHo)rBeFo. The cor-
responding Landau-Wilson Hamiltonian
reads:
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where two-component fleld (E,, gr) describes
the order parameter fluctuations, inverse bare
correlation length squared rcfr being the linear
measure of distance from the phase transition
line, and bare coupling constants are defined in
such a way that for B[0) : Bft the system is
isotropic in (x, y)-plane. For the sake of sim-
plicity the anisotropic gradient term is neglected
in eq. (l) although it is relevant in the re-
normalization group (RG) sense.* When ex-
pressed in terms of Fourier-transformed fields
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Equation (3) is inconvenient to be dealt with
since its harmonic part is non-diagonal in the
field variables. To remove this shortcoming we
replace two real fields g, and E, by single
complex field ry'(q) related to the original ones
by following equations
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* The anisotropy of spatial dispersion may be shown to
produce here just the same effects as in the case of centro-
symmetric crystal. In particular, it may cause the splitting of
continuous phase transition into two first-order transitions
close together in temperature.2)
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Although the field r/(4) doesn't possess any
symmetry properties with respect to the in-
version q--+ - q the fields g, and g, given by Eq.
(4) obey the symmetry relation (2) as a result of
the proper structure of eq. (4). Substituting eq.
(4) into (3) one gets:
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The derivatives of y, and y, with respect to the
dressed inverse correlation length squared rc2

are determined within the oneJoop approxi-
mation by the graphs:
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where
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The expression obtained looks like the
Hamiltonian of interacting Bose-gas. This sim-
ilarity is, however, far from to be complete.
Indeed, eq. (5) contains not single but two
interaction terms of essentially different nature.
The flrst one generated by the isotropic (O(2)
quartic interaction of fields E, and Ey conserves
the number of particles, while the second one
originating from the anisotropic term of initial
Hamiltonian describes the simultaneous crea-
tion and annihilation of four "ry'-fluctuons."
Moreover, the propagator of ry'-fluctuons
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is "shifted" by the vector oe, in momentum
space since the critical fluctuations are conden-
sed at the finite wave vector in the case dis-
cussed.

We put first 7!o): g, i.e. consider the simplest,
isotropic regime of critical behaviour. In this
case the Hamiltonian (5)is precisely identical to
that of the XY model (Bose-gas) provided the
trivial replacement t(q + oe")-.rl(4) is perform-
ed. The critical behaviour of the XY model is
well known.3) It undergoes the continuous
phase transition, and the critical exponents
displayed are y=1,32, fi=0,35, ax}.

Let's further take into account the crystal
anisotropy. To clear up the role played by the
anisotropy in the problem considered the RG
equations for effective coupling constants y, and
y 2 are to be derived and solved. Since the critical
fluctuations are centred in q-space near the
wave vector Qo: oe" we define the renormalized
coupling constants in a following, somewhat
unconventional way:

while the RG equations themselves take the
form:

agr,9,
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where ,: -Lnrc, g,:5yJl6nrc, i:1,2.
Equations (11)possess four fixed points:9,

:516, gz: *5/18 (saddle points), gt:92:0
(unstable knot), and gt:l, Oz:0 (stable knot).
If the initial values of gr, gz lie within the sector

lsrl<grl3 constituting the domain of attraction
of the stable knot then the system becomes
isotropic under 7*I", and it behaves like the
X Y model mentioned above; the tetragonal
anisotropy is renormalized away by the critical
fluctuations in this case. On the contrary, in
strongly anisotropic crystals whose critical be-
haviour is governed by the saddle fixed points
the fluctuations cause further increase ofthe ani-
sotropy until the Landau-Wilson Hamiltonian
becomes unstable that is known to indicate the
first-order phase transition.2) Thus, the incom-
mensurate transitions in such crystals should be
first-order.

In addition to the crystal anisotropy long-
range dipolar and elastic interactions influence
considerably upon the critical behaviour of
ferroelectrics. To take into account the dipolar
forces one can add to the Hamiltonian (3) the
term

l_H":;L I (/2 + hqz1n,npo,e)wpl- tl,t q ,,8=r,v

no: QolQ. 02)

Non-centro-symmetric ferroelectrics possess
the piezoelectric coupling of the order param-
eter fluctuations to elastic strains in disor-
dered phases. The corresponding contribution
to the Hamiltonian for crystals of the Do class
considered below is as follows:
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The Green function G,u@) in the case con-

sidered takes the form:
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where the elastic crystal anisotropy is neglected.

The piezoelectric coupling which may be treated

exactly by calculation of functional integrals

over the elastic degrees of freedom results in the

additional interaction of the critical fluctuations

described by the term:

-L w,p(c)q"(q)qp(- q),

w,,(q) : D (l'- n! - +Ynln!1,

w,n(l):wr,(Q): - Dn"nn(l -aYn|),

It can be seen that corrections to the results of
Landau theory calculated on the base ofeq' (15)

diverge logarithmically for o2 <rc2 <D. Hence,

the dipolar forces and the coupling to elastic

strains suppress the critical fluctuations making
the results of Landau theory valid, apart from the

logarithmic corrections, within the region men-

tioned. Howevero for rc2 <o2, i.e. very near d
the effect of two factors discussed becomes

negligible, and the system displays the power-
law behaviour or the fluctuation-induced first-
order phase transition. If the continuous tran-
sition occurs, then the incommensurate super-

structure should turn into right (undistorted)

helix under T-7"-0 because of the critical
decay of crystal anisotropy shown above. This
prediction may be verified in experiments on
neutron diffraction or second harmonic gen-

eration.
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