
PRoc. JSSF-2, KYoro, 1980
j. Prvs. Soc. JPN.49(1980) Surrl. B, pp. 178-180'

Critical Behavior of the Spinodal
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The spinodal of ferroelectrics is a locus of vanishing inverse susceptibility in E-r
space. Defining the spinodal exponent by E-7", the geometry has been studied by the

static scaling hypothesis and the catastrophe theory. The scaling lavv 5: B6: pa 7 and

2>s>l has been obtained. For higher order critical points of order O, s:(2O-L)tl
(2O-2), where r is the transformation power of a control variable to temperature with

the classical value of l. Experiments of coercivity in TGS and DSP were compared with

the theory.

$1. Introduction

The spinodal of a one-component system is

defined by

:1:s,
x

spinodal near the critical point, compare ex-

perimental results on TGS (triglycine sulfate)

and DSP (dicalcium strontium propionate) with
the theory, and criticize them.

2. Theory

The static scaling hypothesis gives the Gibbs

function of a generalized homogeneous function
AS

G(),o"E,1'"7):1619,71, Q)

from which

X(Ao'E, )."'T): A1-2o"1418, 71.2) (3)

Here we assume cE > 4, ; in other words, we take

the direction in the field space with smaller

scaling exponent ofa path variable as the Z-axis.

Now we define the spinodal exponent s as

E - 7", (4)

representing the geometrical shape of the spino-

dal near the critical point. On the spinodal eq.

(4\, X- a, therefore the left hand side of eq. (3)

--oo. The arguments must satisfY

A,EE _ (fr T)".

From this

,:%. (s)
Q.r

Recalling the well-known relations of B:
(l - au)lar, 6 : atl\-au) and y : (2ar- l)1a7,

and the scaling law ofthe gap exponent /:06,
we obtain the scaling law of the spinodal as

s- A6:0 +y: /. (6)

From the assumption a u) Q7t it can be shown

that the weak direction (larger exponent of any

quantity) is the ?'-axis , and any other direction

(#). /a2G\t_lI sn2 I
\UD /r

(l )

A(P, T) and G(E,I) being the Helmholtz free

energy and the Gibbs function respectively' The

variable P is polarization, and E electric field,

and the response X is susceptibility, in the case of
ferroelectric systems. In the field space E-7, a

phase becomes absolutely unstable in one side

of the spinodal.
The Landau expansion up to the sixth power

in a reduced forml) gives spinodals as shown in

Fig. l. When the specimen is swept in parallel to
the E-axis, the spinodal gives the maximum

value of coercivity, and to the ?"-axis the max-

imum thermal hysteresis.

In this paper, we study the geometry of the

B) (c)

EE

T _-,_-___t___' -o.5
T

Fig. 1. Classical spinodals calculated by the Landau ap-

proximation. Broken lines are coexistence lines. Small

circles are the ordinary critical point for (A) and (C), and

the tricritical point for (B).
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is the strong direction with smaller exponent.
Since the 7-axis is the unique direction, we can
naturally expect that the coexistence line, of
directional singularity, is on the I-axis, if it
occurs at all. From eq. (5) and a">ar, there-
fore, the spinodal goes to the critical point in
parallel to the phase boundary. In other words,
the spinodal is tapered off to the critical point.

Now we impose conditions plausible for our
interest that the polarization P: -@GlADr
and anomalous entropy S:-(AGIAT), con-
verge to 0, the susceptibility X: -@2G|AE\,
diverges to oo, and the anomalous specific
heat divided by absolute temperature clTot:
-(AZGIAT\E does not converge to 0, at the
critical point. That is, I - au> 0, I - a, > 0, I
-2ar<0, and 1 -2ar30. These conditions
give the limits

2>s>1. (7)

In order to consider critical points of higher
order, we utilize the catastrophe theory. It says
that the singulalities of our critical points are
topologically equivalent to the singulalities of
the polynomial

I ^lV:urx l1urx" + 
Ouox*

I l "*...*Vuox*+*rx^* , (8)

with the extreme condition of

dV
*: urlurx 1- uox3 *. . . *uoxk-1 +xk*r :0,

(e)

where k22 is even.3-5) Here,ur:uz:tt+- .

:ut<:O, that is, the origin of the ft-dimensional
control space, gives the critical point of order

(10)

When ezr*O and others are 0, x gives spon-
taneous Jrs near the critical point from eq. (9) as

x": (- ur)ttk. (1 l )

When a, *0 and others are 0, eq. (9) gives

x : \- ut)tl[ +k\ . 02)

If we transform (zr, uz, x) to the physical
variables (E, T, P), eq, (8) plays a roll of the
Gibbs function. The transformation can be
done by ut- -E, uz-7", and x- P", where z,

4,61kO:l +,
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r >0.3'4) From eqs. (ll)and (12),

P - (- T)'1"", p - frl( +t<)n,

that is,

T

F: 
^. 

a:(t+k)n. (13)

The scaling exponents of the path variables a,
and a, are obtained easily as

(l+k)n kn 1 ..at: t+(t+t<)n' ar: 
I +(l +/cIt ; (14)

The spinodal exponent is, 
/om 

eq. (5),

/ r\ 2o-rs:(l +k=/r :2o 
-t. 

(ls)

The classical value of z is l, so that the
spinodal exponent s:312,514,716,. . . as O:2
(ordinary critical point), 3 (tricritical point),
4,. . . It tends to I for higher order critical
points. The classical spinodals with s: 312 and
514 are those shown in Fig. l(A) and (C), and
(B) respectively.

53. Experiments and Discussions

As mentioned earlier, the spinodal is the
upper limit of coercivity. The experimental
coercivity has been considered to be reduced
greatly from the theoretical one by the mobility
of the domain wall. Many of the coercivity
experiments have shown convexed shape as a
function of temperature. That is to say, the
apparent exponent is less than 1. In fact, Gon-
zaloT)observed it as 0.79. Ifs> l, the coercivity
may be truncated or compressed by the spinodal
which goes to zero faster near the critical point.
So the spinodal is expected to be obtained by
coercivity experiments in a small temperature
range.

For TGS, values of the critical exponents can
be approximated by the classical values.T -ro)In
the case of DSP, y: 1.33 and B:9.31,11)giving s
:1.64. We measured coercivity of TGS from
hysteresis loops of 0.3H2, as shown in Fig. 2.
Falling short ofthe expectation, the exponent s
seemed to be I near the critical point. Un-
published data of a well-annealed DSP crystal
by Deguchi and Nakamura (60 Hz hysteresis
loop;tzr is plotted for this purpose in Fig. 3.

As far as a value of electric field from the
hysteresis loop concerned, we do have an am-
biguity coming from the surface layerl3) and
adiabaticity. If specific heat of the transition is
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2. Coercivity of TGS. From hysteresis loop, 0.3 Hz,
.6 V/cm of amplitude.
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Ec

V/cm

not very small compared with the normal one,

the adiabaticity may give a considerable error.
In addition, the domziin wall motion may cause

a reduction ofthe coercivity at very close to the

critical point in some cases. We have presented

here rather poor value of s: I to be compared

with 1.5 for TGS, and a pretty good value s

:1.25 compared with 1.64 for DSP.
The authors express their sincere thanks to

Dr. K. Deguchi and Prof. E. Nakamura for
their kind offering of unpublished data on DSP.
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Fig. 3. Coercivity of DSP. From hysteresis loop, 60 Hz,
4.465kY lcm of amplitude.
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