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The nature of the ordered phase and the phase transition in
the classical XY model in two dimensions is now well under-
stood due to the work of Kosterlitz and Thouless and others.
High temperature series expansions indicate that the phase
transition in the spin one half XY model in two dimemsions
may be of a different nature. At T=0 the quantum nature of
the s=1 /2 model is manifest. The ground state supports both
vortex-antivortex pairs andrmore prominently, spin up - spin
dornm pairs wittr <ofi o:> = -0.15 on the square lattice. At
1ow temperature a domilete solution for the s=1/2 model on a
16 site lattice indicates that the most important excitations
are states of complete symmetry formed by overturning spins.
We propose that the break up of up-down spin pairs is respon-
sible for the phase transition.

1. Introduction
The problem we would like to solve is to understand both the nature of

the ordered phase in the two dimensional quantum XY model and the nature of
the transition to this phase from the disordered high temperature phase. The
simplest quantum mechanical many body system is probably the spin one half XY
mode1, which is governed by the Hamiltonian

H = +l {o1 o1*o + o} o}..5)
'r r0

E ^, exp bt (r-rc) /t;-1/z
and the transverse susceptibility

(1)

In (1) the ors are Pauli matrices, g is the coordinate vector of a regular
lattice site and 6 is a nearest neighbour lattice vector. The first sum extends
over the N sites of the lattice and 6 extends over all nearest neighbours to
the site at r.

It is now well knovm [1] that neither the spin one half XY model nor Lhe
spin infinity or classical XY model can have a conventional second order phase
transition to a state of uniform transverse magnetization.

The phase transition and the nature of the ordered phase in the spin in-
finity or classical XY model are now well understood due to the work of
Kosterlitz and Thouless [2], Miyashita et a1 and others [3]. At low tempera-
tures the ordered phase is characterized by bound vortex-antivortex pairs.
At the phase transition these pairs unbind, so at high temperatures the dis-
ordered phase is characterized by isolated vortices artd antivortices. This
system is analogous to a plasma of ions and electrons at high temperatures
which undergoes a transition to a gas phase of neutral atoms at 1ow temper-
atures. The Kosterl-itz-Thouless transition is a very weak transition in the
sense that the correlation length, {, diverges as

ll

T'TC (2)
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X N €2-t) T'TC
where \=1 14.

This exponential behaviour has been confirmed by analysis of high temper-
ature series for the classical XY model on the square and triangular lattices
by camp and van Dyke and by cuttmann [4]. They found it much less plausible
that thermodynamic quanEities such as the transverse susceptibility have a
conventional power 1aw divergence in two dimensions than to have an exponential
singularity.

For the s=l/2 xy model in two dimensions Rogiers et al [5] carried out
extensive analysis on the high temperature series expansions of the transverse
magnetization fluctuation, 

^<S1>,, 
(essentially rhe suscepribiliry), the fourrh

order fluctuation in \r 3.*ir'..r+> and the second moment and the fourth
moment of the transverse correlation, (oX ox>. Using the same methods of
series analysis as the previous authers [+]'r" found for ttre s=T7Zli5-ae1 con-
trary results. For the thermodynamic functions of the spin one half XY model
in two dimensions it is more plausible that a conventi^oGl@TF singulari-
ty occurs. Specifically we Lstimated KJ=0.76 and KaQ=1.27 for the rriangular
and square lattices respectively, \=2.510.3, A=2.8t0.2 and V=1.4i0.1 in the
usual notation.

For conventional second order phase transitions in magnetic systems univer-
sality with regard to spin magnitude, s, is supported by all the evidence. For
the unconventional phase transition(s) in the two dimensional Xy model the
evidence from high temperature series at least does not confirm universality
with respect to spin.
2. Ttre Spin One Half XY Model at T=0

In this section we review some recent results on the nature of the ground
state of the s=1/2 XY model in two dimensions, and we present some previously
unpublished results. Understanding the nature of the ground state is a neces-
sary first step in understanding the nature of the 1or^r temperature ordered
phase.

For the ferromagnetic spin one half XY model on a lattice of an even
number, N, of sites the ground st.ate
(a) is non degenerate [6],
(b) belongs to the identity representation of the space group of the lattice and
(c)hasM_=| 

s?=oa . u. Il=l

To obtain further information on the ground state of the s=1/2 XY model
Oitmaa and Betts [7] developed the finite lattice method in rwo dimensions. In
this method the quantity of interesE is calculated exactly on each of a series
of finite lattices of N sites chosen in such a way as to be capable of tiling
the infinite lattice. The values so calculated are plotted against 1/N and
extrapolated to yield estimates for the infinite lattice.

We have recently calculated the ground state wave function for the 20 site
ce11 on the square lattice. The resulting exact two spin correlations are
listed in Table 1.

Table 1. Ground state correlations for the s=1/2 YY model in the 20 site ce11
of the square lattice.

g76 r/6

(3)

(t,o)
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The pattern of correlations listed in Table 1 is typical of that in all cell-s so
far investigated. Observe the following features:
(a) the transverse correlations, <ofi of>, are of the order of 0.5 and decrease
slowly and monotonically with distande
(b) the longitudinal corr.elations, <ofi of>, are all negative and also decrease
monotonically with distance
(c) the nearest neighbour longitudinal correlation <ofi o26>, is an order of
magnitude greater than further neighbour correlations "

Fig. 1 Nearest neighbour corre-
lations <oX oX> (circles) and
-3<ofi ol> "(sq"uares) for the s=
1/2 "xY"model for ce11s of N=8,
10, 16, 18 and 20 sites on the
square lattice.

Fig. 1 shows a typical 1/N plot for the two nearest neighbour correlations.
From Fig. 1 we obtain the refined estimates for the infinite square lattice,
<ox oX, = -En/2NJ = 0.538t0.005 and <o7 otr, = -0.14910.008. For comparison rhe
sedoni[ order-variational estimates of "SuZuki and Miyashita [81 are <ofi of;> =
0,537 15 and. <oV oz^> = -0.14286.

Refined "8ti,9.t.s have also been obtained for <d>/(SUull)2 = 0.112!O.OO4,
the square of the transverse magnetization. Similar expressions for the two
staggered magnetizations vanish, but the fluctuations in^the staggered magnet-
izations ^r" <nf,>l(gus)zN = 0.072610.0010 ald <"f>l(gvflzN = 0.392^ro.01o. rn
comparison suzuffi .ii"l,tiyrrhita [8] tina .r,4rlfeiBN>2 2 0.1151, <.,1>/{gus)2u =
0.173 and <nf>l(gUs)zN = 0.311.

In classical models or quantum models in which the magnetization operator
conrnutes with the Hamiltonian the susceptibility and magnetization fluctuation
are equal when expressed in dimensionless units. In contrast for the s=1/2 Yl
model on the square lattice we find [9] for the staggered susceptibilities

.r1*s*/N(gps)2 = 0.276 = O.S8<n?>/N(suB)2

.rxizlN(eus)2 = 0.147 = o.:acn!>/m(eus)2

G)
and

l3

(s)
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More startling is the result for the uniform transverse susceptibility,
JX**/(Ngus;2 'r' P0'9 (6)

A11 the above results indicare that at T=0 the s=1/2 Xy model is very
different from the simple s=@ XY model. Nevertheless the quantun model may also
support vortices and vortex-antivortex pairs. Indeed whereas in the classical
XY model vortices and vortex-antivortex pairs can occur only for T)0,as excita-
tions, in the quanturn XY models vortices and antivortices can occur due to zero
point motion even at T=0. According to our definition [10] the s=l/2 XY model
supports 0.025 vortices and antivortices per site on the square lattice. The
number of vortex-antivortex pairs at T=0 is 0.012 per site on the square lattice,
which implies that essentially all of the vortices and anti-vortices occur asttbound" pairs. Similar results hold on the triangular lattice.

There is a clear possibility that the phase transition in two dimensional
quantum XY models as the temperature is raised through T. corresponds to the
unbinding of vortex-antivortex pairs, just as in the claEsical XY model. There
is another possibility for the quantum models not open to the classical mode1.
The phase transition may correspond to the dissolutioo of ttbound" pairs of up
and down spins. From finite lattice calculations [6,11] the number of nearest
neighbour up and dovm spin pairs (in the z direction) is 0.15 per site in the
s=l/2 XY model on each of the honeycomb, square and triangular lattices. The
latter structures are thus an order of magnitude more coflunon than the vortex-
antivortex pairs and hence a priori 1ikely to have a more important role in the
phase transition.
3. The Model at Low Temperatures

Reeently one of us has diagonalized completely the s=112 YY model Hamilton-
ian on each of the N=8, 10 and 16 spin ce11s of the square lattice [12]. This
has enabled the calculation of the energy, entropy and specific heat of the
model as a function of the temperature in each ce1l and permitted an extrapola-
tion to the infinite lattice.

It is instructive to examine the energy 1eve1 spectrum in detail in the
vicinity of the ground state for the 16 spin ce1l. rn Fig. 2 are plotted, as a
function of M, (or total z component of spin) all energy eigenvalues less than
'12J. The lowest and second lowest eigenvalue for each value of M, are also
plotted. (The spectrum is of course synunetric about the Mr=0 axis)

Fi,g. 2 Energy levels of the s=1/2
XY model on a cell of 16 sites
versus longitudinal magnetization,
lulz. A11 energies less than -12J
are included. Relative ground
state (circles) and first excited
state (squares) are plotted for
each value of NI".

E
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It is a consequence of the Frobenius theorem that the eigenvector of the
relative ground state for each value of M, belongs to the identity representa-
tion of the space group of the cel1. rn Fig. 2 these relative ground state
energies have been connected by a smooth curve. This curve is very well
represented by the parabola

Eo(Mz) = Eo(o) + a.29sJ\f e)
The set of second lowest eigenvalues for each value of Yl" are also well fitted
to a parabola of slightly different curvature. The s)rnrn6try of the correspond-
ing eigenvectors is for each value of M, the same but different from that of
the ground state.

The variational expression [8] for the relative ground state is
Eo(Mz) = Eo(o) +;q/(u-i)u3 (s)

For N=16 and q={ (8) reduces to
Eo(Mz)=Eo(O) +0.267tMf,, (9)

in remarkable agreement with the exact calcualation.
Note the N dependence of the curvature coefficient in (8). We conclude

that for the very large lattice the dominant excitations at 1ow temperature are
those syrrnetry preserving excitations in whieh individual spins are turned over
to increase M, and thus to decrease <o7 otr>. These 1ow lying excited states are
not spin waves for they are not periodYc;'we might call them "spin billows,,.

The gap between the ground state and the lowest energy state of a different
symmetry may well persist for large lattices. In other words spin waves may be
unimportant at 1ow temperatures.

We take the nature of the lowest lying excitations as further evidence in
supPort of the picture that the phase transition corresponds to rapid breakup
of spin up - spin dovm pairs.
4. New Series at High Temperatures

The method of high temperature series expansion has proved very successful
in the investigation of conventional second order phase transitions and, as
noted in Sec. 1, certain series, especially the fourth order fluctuation in the
transverse magnetization, indicate a phase transition in the two dimensional
s=112 fY mode1.

If our picture is correct we expect the order parameter to be

C=-Iozoz^&^ r r+d
_rr9-- -

which has the same form as the energy so might be called thettcoenergyrr. The
coenergy per site, <c>/N = -qlz<&n o!>, will remain finite but we may expect
both the temperaEure derivative of tHe coenergy and the fluctuation of the co-
energy, (<cz> - <C>')/N, to diverge at T6.

It is perhaps helpful to compare the high temperature series for the two
nearest neighbour correlations. The first twelve terms of <oI oT> are knovm
for several lattices [5]. For the triangular lattice

0.5K + 0.512 + 0.04157K3 - 0.625K4

-0.80139x5 + 0.47153x6 +...

( 10)

(11)

of the longitudinal

+ ... (12)

to6 ot, =

We have so far derived by hand only the first few terms
correlation for the triangular lattice,

-.o6 o6, = 0.75K2 + 0.5K3 - 0.875K4 - 1.675K5

We observe that the longitudinal correlation is negative at high tempera-
ture as at T=0. Further, the magnitude of <ofr o3r.t high temperatures is an
order of magnitude less than that of <o{ o{>,"and it remains a factor of three
smaller even at K=0.5r beyond which sucH a"short series can no longer be retied
uPon.

t5
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Prof. E.I{. Grundke and one of us (D.D.B.) are planning to generate with
the aid of a computer long series for both C and the fluctuation in C.

5. Monte Carlo Method and Concluding Remarks

Suzuki et a1 [13] have developed a method for the Monte Carlo simulation
of quantum spin systems. Their method is based on application to the Hamilton-
ian of the Trotter formula,

exp(87*) = "*pIHi = l+S ([expHi/n)n ( 13)

As Suzuki has shown [14] the application of (13) permits the reduction of a

quantun problem in d dimensions to a classical problem in d+I dimensions. Then

it is possible to study the classical problem by Monte Carlo methods in the
usual way. In practice it is necessary to use in (13) some small value of n, in
which caie the correspondence between the quantrxt and classical models is
approximate. The formula (13) for finite n becomes exact at infinite tempera-
tuie, so the method is seen to be an alternative to the high temperature series
method.

Suzuki et a1 [13] have applied the above method to the spin one half
Heisenberg and XY models in one dimension and to the XY model on the square
lattice. They used the n=l and t=2 approximants to (13) on lattices of n = 9x9,
15x15 and 30x30 sites respectively. They used the Monte Carlo method to compute
the internal energy, specific heat and transverse susceptibility of the two
dimensional XY mode1.

Their results for n=2 are in very good agreement with the high temperature
s6rjes results down to T*'1.5J/k,-. Their susceptibility appears to diverge at
1c*1 .OJ/ko as compared with the"high temperature series divergence IS] at
ti=O.e-l/f<i. Their specific heat maximam occurs at approximately the same posi-
tfon as thEir susceptibility divergence, whereas Kellandts maximum [12] occurs
at TnMiz1.4J/kR. the height of the specific heat maximum of Suzut<i et al [13]
is C;m/NkR = OiS, considirably higher than that of Kelland, who finds Crm/Nkg

= 0.56. "
We believe all the above quantitative discrepancies between our results and

the Monte Carlo results arise from using r=2 i-t the Trotter formula. Such a
degree of approximation means that quantum effects are not adequately accounted
foi T { 1.5J/kg. In particular the divergence of the susceptibility at too
high a temperature could be due to Ising like effects.

In summary we have presented three types of evidence favouring a qualita-
tive difference between the phase transitions in the classical and quantum
(specifically spin one half) XY models in two dimensions:
1. Rather fong iri-gtr temperature series expansions for both models seem to indi-
cate an expon-rrtial divergence of thermodynamic properties at T" for 5=o, in
conformity with the Kosterlitz-Thouless picture. On the other hand thermo-
dynamic properties of the e=l/2modeL seem to have a power law divergence.
2. The properties of the s=l/2XY model at T=0 show very important quantum
effects and are very different from those of the classical model.
3. The most important excitations of the s=@ model at 1ow temperatures are spin
waves while for the s=1/2 model perhaps the most important excitations are
syunetry preserving modes in which ul is increased from zero.

We piopo"" thit the principal mechnism responsible for the phase transition
in quantum XY models in the symmetry preserving breakup of nearest neighbour
paiis of up and down spins rather than the breakup of nearest neighbour pairs
of vortices and antivortices as in the s=- mode1. Such a phenomenon does occur
at low temperature for the s='l/2 model where spin up - spin down pairs are an

order of magnitude more contrnon Lhan vortex-antivortex pairs'
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