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STATISTICAL MECHANICS ON THE. SPIN GLASS PHASE
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We propose a statistical theory of spin glasses, which

have degenerate local minimum states. In order to study

how the relevant system changes from one local minimum

state to another, we introduce here two kinds of symmetry
breaking fields: quenched and annealed symmetry breaking
fields for short and long time scales, respectively, on

the basis of the concept of the real replica proposed by one of
the present authors. We give a general frame-work to

calculate the spin glass order parameter and its response

for each kind of symmetry breaking field.

§1. Introduction

The purpose of the present paper is to present a unified picture of spin
glass. There have been proposed many theories of spin glass, which may be
classified roughly into two groups, namely Edwards-Anderson replica-type and
Mattis-type (i.e., generalized antiferromagnetic phase or ROP). Spin glass
phase transitions may also be interpreted experimentally (or using the Monte
Carlo simulation) in two ways, namely as equilibrium and non-equilibrium phase
transitions. In this confusing situation, we try to understand the spin glass
phase transition in a unified way, from the view-point that it is an intrinsi-
cally non-equilibrium phenomenon. Our picture of a spin glass is the following.
There exists a certain characteristic time te of the spin glass and an equili-
brium phase transition is observed in an experimental tim scale less than t,
(i.e., t<<t.), while a non-equilibrium (or quasi-equilibrium) phase transition
is observed for the time scale t>>t_ . Our key-point is to propose explicit
formulations to describe the above situations by introducing the concepts of
a) annealed symmetry breaking field and b) quenched symmetry breaking field.
The former is closely related to the replica theory and it corresponds to the
region of long-time scale (t>>t.), while the latter discribes the short-time
behavior.

§2. Annealed Symmetry Breaking Field

In this section we introduce an annealed symmetry breaking field hg by
P n N n,a#RB 8 B
F, ' = -kpT < logTr exp{-B ) FUsY) + b Y ) s, sj}>

j (2.1)
a=1 j=1 a,B

av

for the real n-replica, which was first introduced by one of the present authors[1]
dere J£ (1) denotes the Hamiltonian of the n-th replicon, s: denotes the Ising

spin at site j and n is an integner not less than two. The notation <...>

denotes the average over the random distribution of the exchange coupling. It
should be noted that the limit n - 0 is not taken anywhere in arguments, which

is one of the essential points of our real n-replica method [1]. This concept

of the real replica method has been extensively applied by Sherrington [2] and

by Kasai, Okiji and Syozi [3]. These applications have been discussed in
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annealed real n-replica systems. The above free energy an) corresponds to the
quenched real n-replica with an annealed symmetry breaking field. However, the
fundamental ideas of both formulations are essentially the same in the sense
that they were both introduced in order to define the spin-glass order para-
meter without using the trick n + 0 of the Edwards-Anderson replica method.[4]
The quenched real two-replica method was extensively used by Blandin, Gabay,
Garel and De Dominicis.[5,6]

Now the spin-glass order parameter q( corresponding to the formulation
(2.1) is defined by n)

N n,a#B

lim 1im N1 < ) ) <@ B (2.2)
h 0 Nowo =1a,g 1 I

Yy =

The corresponding Landau quasi free energy an)(q(n)) for a fixed spin-glass
order parameter q(,) is defined by
N n,a#B
N (a(ny) = ~kpT<logTrsC ) | c@ B Nl D@y 2.3
j=1 a,B S a=1 ]

This free energy can be expanded formally as
(n) - () (n) 2 (n) 3 (n) 4
FA (q(n>) - FA (0) +c (T)Q(n) +d (T)q(n) + e (T)q(n)+ o wie (2.4)

by using the Suzuk1E7;—Brout[8]—Nakano[9] method, where all the coefficients
(n)(T) d(n)(T) (T),... are expressed microscopically with the use of
cumulants[lO] <"'>c- For example, we have
N n,a#R

L@ L@ (B2, -1
(T) = Nk 1"{<<(JZl OLZB 58y T (2.5)

The spin-glass order parameter ¢ .y can be determined by minimizing the free
energy Fp >@(n)) (not maximizing as in the Edwards-Anderson replica method).
This is one of  the great merits of our real replica method, as was pointed out
in Ref. 1.

Here it should be noted that the coefficient d( )(T) in (2.4) always van-
ishes from the symmetry property of the two real replica, as was pointed out in
Ref. 1. Therefore, the symmetry of Féz)(q) is quite different from F&n)(q) for
n>3. That is, é )(q) is an even function of q, while F(n)(q) for n> 3 are not,
Then one might be worried about the arbitrariness of our theory. In fact, if
we apply[l] the Landau tyEe argument to the present pf Elem we obtain the tem-
perature dependence of q( quite different| from '\ for n > 3, even in the
mean field theory. However, it is suff1c1ent that all q (n) yield the same
critical point and essentially the same physical picture of the spin-glass
phase transition. In fact we can easily show this consistency of the defini-
tions of various order parameters {q n)}'

) For this purpose we apply the Landau type argument to the free energy

(q)—hsq, namely by minimizing it we obtain

(n) (n) 2 (n) 3 L
c (T)q(n) + 3d (T)q(n) + 4e (T)q(n) 4.+« =h . (2.6)

s
Therefore, the response of q(n) is given by the spin-glass susceptibility ng)as

(n) (n)

- ) - ) o .
q(n) = ng hs 5 ng = 1/[2c (T)]. 2.7)
If we use the microscopic expression (2.5), we arrive at
N n,a#B
XS(n) = BN 1. ) }os, u)S (B), 2, > 2.8)
: j51a,g=1 3 3 e

Of course, this formula can be obtained directly from the differentiation of
(2.1).

For simplicity, we now consider the case T > ng for the symmetric distri-
bution P(-Jij) = P(Jij). Then, from the local gauge invariance, we obtain
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(n) _ n(n n(n-1) 2
Ll 8 z <<s, Sj> >av (2.9)

Therefore, all Xén) have the same singularity, which is expressed by the corre-
lation in the origianl system (say o = 1). That is, all 4(n yield the same
critical point and the same response to the symmetry breaking field hg, al-
though q( n) themselves behave quite differently for n = 2 and for n > 3 as is
easily seen from (2.6).

Now we discuss the nonlinear suceptibility [1] Xp defined by

= 34+ ...
I = X * dghs ¥ (2.10)
for the magnetization m. It is well-known [11] that
Xo = B(1-a(?) (2.11)
and
_ 1 .3 4 _ 1 .3 4 2.2
Xo = gF B SM> > = Sr BT <M >-3M (2. 12)
where M = Z iS5 - If the system has again the local gauge invariance for the
symmetric dlstrlbutlon of Jlj, then we obtain
2 282 (n)
& < >T> = -2
X5 NB 23 <s, sj . g (2.:13)
)

above the spln glass transition point ng and consequently it diverges negative-
ly at T = gt0, and also we have [12]

_3lv_* 2
Xy = B™N L <(<si S'>_<Si><sj>) >av
lJ
+ 283N z <<s, ><s >(<s s,>-<g,><s,>)> + (lower terms). (2.14)
i j 3 i” 737 Tav
for T < T For the Mattis model [12], Xy diverges positively [13] just below

Tgp. In géneral frustrated spin systems, the first tems in (2.14) is expected
to be more dominant than the second term and consequently we may expect the
negative divergence [14 Vv 18] of X2. More explicitly, we may assume the follow-
ing scaling relations

= - 2 ~ —ﬁS
cl(R) = <(<si sj> <si><sj>) >av R fl(R/E) (2.15)
CZ(R) = <<si><sj>(<si><sj>_<si><sj>)>av ~ R7s fz(R/E) . (2.16)
Therefore, we obtain
Je,®adr = [xs £ () adx-g?Ts (2.17)
and
Je,®adr = x5 () adx.gs (2.18)

Thus, the first and second terms in (2.14) give the same singularity under our
scaling assumptions (2.15) and (2.16). Consequently the quantity f = (2cp-cj)
determines the sign of the divergence of X9, where

¢ = [x s £, adx, (2.19)

In non-frustrated systems, the quantity <sj><sj> in the second term in (2.14)
gives a large contribution to X,, because it is essentially the square of the
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spontaneous magnetization. As the frustration increases, it becomes smaller
and smaller. Therefore, as the frustration increases, the sign of the diver-
gence of X, changes abruptly at a certain point of "the degree of frustration",
if it is appropriately defined. Thus, we may call f the frustration parameter.
We may say that the system is intrinsic spin-glass, if f < 0, and that the
system is essentially spin-glass of Mattis-type, if f > 0. In this sense, the
sign of the divergence of the nonlinear susceptibility Xo below the transition

point is essentially important.
An application of the above formulation to the SK model [19] will be dis-

cussed later.
§3. Quenched Symmetry Breaking Field
In this section we introduce a quenched symmetry breaking field hg by [17]

FQ _ 'kBT = Z P({Si} B',h')log Z e‘BX(U)+R§§iSi>aV (3.1)
{si} {Oi}

where(9€(o) is the hamiltonian of the system,
H (o) = -iZj 3459595 - H%Oi , (3.2)

and P({s;},B',h') denotes the probability distribution function of quenched
symmetry breaking field. Usually, it is given by the canonical distribution
corresponding to the same Hamiltonian 2{ (s). The order parameter of the spin-
glass is defined by

q = lim 1lim <<<0,>

s.,> > (3.3)
h 40 N0 I8

j B' av

where <0.>p is the canonical average of 0; at the inverse temperature B. When
B' = B, q is reduced to q(2) in the anneaied symmetry breaking field. The
quasi free energy FQ(q) for q fixed is given by

-B¥(0)

Foa) = —k,I< ) P({s.},B',h")1log ) 8()Js.0.-Ng)e (3.4)
{Si i {Oi} i ii av
This can be expanded again as
FQ(@ = Fo(0) + cq® + g’ + oo, (3.5)

which is an even function of q. Therefore, the spontaneous order parameter
qp(T) is _given by the solution 2cqp + 4dq8 + ... =0, i.e., qp = (-c/2d)1/2
(TC—T)l/2 in the mean field theory. The response of q is given by q = nghs 5
where

Q _ 1Y
== Y« > < > >
Xs g N_Z, <s; 5578190 78%ay . (3.6)
i,]
If we take the limit B' = «(T' = 0), then XQ is reduced to Binder's definition

s
[20] of the spin-glass susceptibility. The %onlinear susceptibility X» is also

defined by (2.12).

Now we may expect the following quite interesting situation that ng diver-
ges at a certain temperature Tg for a fixed large value of B', say B' = o,
although Xég) (or Xp) do not diverge at finite temperatures. If possible, it
corresponds to a quasi (or non-equilibrium) phase transition, because our formu-
lation of the quenched symmetry breaking field describes the short-time behavior
of the spin glass,as was mentioned in §1. That is, the possible singularity of
ng describes the transient phase transition, namely the freezing of spins in
some local minimum state for short-time scale. In this sense, our formulation
yields the statistical mechanics of the spin-glass phase.
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84. Classifications of Spin Glasses

It may be convenient to classify spin glass phases according to our formu-
lations as follows.
i) 1St classification: There may be two types of spin glasses, namely A-type
in which Xé% =+ o (and also')(s > ) at T = Tg, and Q-type in which x&, + « at
T = Tgg but X?‘ = finite. For example, the Mattis model [12] and the SK model
[19] belong to A-type, and the Cayley tree Ising spin glass belong to Q-type
near T, at which xg3 diverges but Xéé is finite. This situation clarifies the
difference between the glass—like phase [21] and ROP [22].
ii) 27d clagsification: As is discussed in §2, there are two types of diver-
gence of Xp, namely positive or divergence for T + Tg,-0. Spin glass with
positive divergence (i.e., f > 0) is of Mattis type, and we call it "weakly
frustrated (or non-frustrated) spin glass". Spin glass with negative diver-
gence is intrinsically frustrated spin glass and we may call it Edward-Anderson-
Sherrington-Kirkpatrick (EASK) type. A typical example of EASK type is the SK
model. :
iii) 3rd classification: One may also classify spin glasses according to whether
there exists a permanent local moment or not. If it exists, it can be a well-
defined order parameter to describe the spin glass phase, as in the SK model
and in the Mattis model. If it does not exist, then it is quite difficult to
define the order parameter even in the case of the existence of a phase tran-
sition and the transition point is defined only by the divergence of Xo. This
case may be quite similar to the Kosterlitz-Thouless transition of the two-
dimensional planar model. There is another situation in which there occurs no
phase transition at all in the sense of equilibrium phase transition, but a
transient spin glass phase may appear as in the two-dimensional *J model.

If we combine the above three classification methods, then we may have some
clear vision for various different kinds of phenomena in random spin systems.

§5. Discussions

In the present paper, we have got around the difficulty that the minimiza-
tion of the Landau type free energy gives always a positive divergence of the
nonlinear susceptibility [17]. That is, we have used the microscopic expression
(2.14) of the noniinear susceptibility Xp rather than the phenomenological
relation between xp and Xg, as in [17].

We have also applied our two formulations to the SK model and we have
obtained a sharp saturation of the magnetic susceptibility in a certain region
of strength of the magnetic field. This sharp saturation is characteristic of
spin glasses. Details will be reported elsewhere [23].

The authors would like to thank Professor D.D. Betts for critical reading
of the manuscript.

References

[1] M. Suzuki, Prog. Theor. Phys. 58 (1977) 1151.

[2] D. Sherrington, A.13 (1980) 637.

[3] Y. Kasai, A. Okiji and I. Syozi, Prog. Theor. Phys. 65 (1981) 140; ibid
66 (1981) 1561.

S.F. Edwards and P.W. Anderson, J. Phys. F.5 (1975) 965.

Blandin, M. Gabay and T. Garel, J. Phys. C.13 (1980) 403.

De Dominicis and T. Garel, J. de Phys. 40 (1979) L575.

Suzuki, J. Phys. Soc. Jpn. 22 (1967) 757.

Brout, Phys. Rept. 10 (1974) 1.

Nakano and N. Hattori, Prog. Theor. Phys. 49 (1973) 1752.

. Kubo, J. Phys. Soc. Jpn. 17 (1962) 1100.

.H. Fischer, Phys. Rev. Letters 34 (1975) 1438.

Chalupa, Solid State Commun. 22 (1977) 315.

.C. Mattis, Phys. Letters 56A (1979) 421.

Oguchi and T. Ishikawa, J. Phys. Soc. Jpn. 50 (1981) 2180.

O 00~ O

— e
e e e e ey

o

= o
HOuuAR X TDTHIRXOPwm

rﬂrﬁ
=
w N
s

99



[14]

[15]

M. Suzuki et al.

Y. Miyako, S. Chikazawa, T. Saito and Y.G. Yuochunas, J. Phys. Soc. Jpn.
46 (1979) 1951.

P. Monod and H. Bouchiat, in Notes in Physics 149 (Springer-Verlag,
Berlin 1981). —_‘—

S. Katsura, Prog. Theor. Phys. 55 (1976) 1049.

M. Suzuki and S. Miyashita, Physica 106A (1981) 344.

M. Suzuki and S. Miyashita, in Notes in Physics 149 (Springer-Verlag,
Berlin 1981).
D. Sherrington and S. Kirkpatrick, Phys. Rev. Letters 35 (1975) 1792.

K. Binder, Fundamental Problems in Statistical Mechanics V E.G.D. Cohen,
Editor, North-Holland, 1980. See also K. Honda and H. Nakano, Prog. Theor.
Phys. 65 (1981) 83.

. Matsubara and M. Sakata, Prog. Theor. Phys. 55 (1976) 672.

. Katsura, Prog. Theor. Phys. 55 (1976) 1049. ~

Fujiki and S. Katsura, Prog. Theor. Phys. 65 (1981) 1130.

. Ueno and T. Oguchi, J. Phys. Soc. Jpn. 40 (1976) 1513.

Suzuki and S. Miyashita, to be published elsewhere.

E<wnwnH

.

100





