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STATISTICAL MECHANICS ON THE SPIN GLASS PHASE
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We propose a statistical theory of spin glasses, which
have degenerate 1oca1 minimum states. In order to study
how the relevant system changes from one 1oca1 minimum
state to another, we introduce here two klnds of symmetry
breaking fields: quenched and annealed synmetry breaking
fields for short and long time scales, respectively, on
the basis of the concept of the real replica proposed by one of
the present authcirs. We give a general frame-work to
calculate the spin glass order parameter and its response
for each kind of symmetry breaking field.

.51. Introductlon
The purpose of the present paper is to present a unified picture of spin

g1ass. There have been proposed many theories of spin glass, which may be
classified roughly into two groups, namely Edwards-Anderson replica-type and
Mattis-type (i.e., generalized antiferromagnetlc phase or ROP). Spin glass
phase transitj.ons may also be interpreted experimentally (or using the Monte
Carlo simulatlon) in two ways, namely as equilibrium and non-equilibrium phase
transitions. In this confusing situation, we try to understand the spin glass
phase transition in a.unified way, from the view-poj-nt that it is an intrinSi-
cal1y non-equilibrium phenomenon. Our picture of a spin glass is the following.
There exists a certain characteristic time tc of the spin glass and an equili-
brium phase transition is observed in an experimental tim ;ca1e less than t.
(i.e., t<<tc), while a non-equilihrj-um (or quasi-equilibrrum) phase transition
is observed for the time scale t)>tc. Our key-point is to propose explicit
formulations to describe the above situations by lntroducing the concepts of
a) annealed symmetry breaking field and b) quenched symmetry breakj-ng fie1d.
The former is closely related to the replica theory and it corresponds to the
region of long-time scale (t>>t"), while the latter discribes the short-time
behavior.

52. Annealed Symmetry Breaklng Field
In this section we introduce an annealed symmetry breaking field h" by

o(r)=_u 
n Nn-o'*B

"A - -*Br < logrr ""0{-B^,l,rq"J) 
* h".1, 

^1, "? "5}r", (2.L)
0=I . j=I 0,8

for the real n-rep1ica, which was first introduced by one of the present authors[1]
terefl(o)-[enotes the Hamiltonian of the n-th replicon, sj denotes the Ising
spin at site j and n is an lntegner not less than two. The notation <...>
denotes the average over the random distribution of the exchange coupling. It
should be noted that the limit n -+ 0 is not taken anywhere in arguments, which
is one of the essential polnts of our real n-replica method [1]. Thls concept
of the real replica method has been extensively applied by Sherrlngton 12] and
by Kasai, Okiji and Syozi [3]. These applications have been discussed ln

95



M. Suzurt et a/'

annealed real n-rep11ca systems. The above free energy rf,n) 
"o.t"sponds 

to the
quenched real n-replica with an annealed symnetry breaking fie1d. However, the
fundamental j-deas of both formulations are essentially the same in the sense
that. they were both introduced i-n order to define the spin-g1ass order para-
meter without using the trick n + 0 of the Edwards-Anderson replica method.14]
The quenched real two-replica method was extensively used by Blandin, Gabay,
Garel and De Dominicis.[5,6]

Now the spin-g1ass order parameter q, \ corresponding to the formulation'(n)(2.1) is defined by N n.ql.
e(.,) = 

,:lT. ** *-' ','1, ;:E'"'"j"' "18)"", (z'z)

The corresponding Landau quasi free energy tl")(ot.r>) for a fixed spln-g1ass
order parameter q(n) is defined by

rf") cc,,1) ='-kur<1orr. u,.!r".ll'"j"'"rtu'-*or.*r{-Bo!, (o),"(o),i (2.3)

Thls free energy can be expanded formally as

rj") tolr,yl = .1") (o) + .(') tr)olrl * a(') (r)olrry + 
"(n) tr)q1.,)* (2.4)

(2.5)

by using tl1e. Suzuki[7]-Brout[8]-uatano[9] method, where all the coefficients
c(n) (T), d(n) (T), e(n) (T),... are expressed mi-croscopically with the use of
cumulantsIfft] <...>c. Eor example, we have

"(') (r) = | r.rturr.., ir";i:'"r,o,", 
(B);2,",..,,i-1

The soin-elass order parameter g1r1 can be determined by mj-nimj-zing the free

"r,"rgy 
tfil)to<.,.,) (not maximizinitSA i" the Edwards-AndersonTEplTG method).

This is one of'the great merits of our real replica method, as r^ras pointed out
ln Ref. 1.

Here 1t should be noted that the coefficient U(2)1r) in (2.4) always van-
ishes from the symmetry property of tle,two real replica, as was point,ed out in
Ref. 1. Therefore,.the symmetry of FAZi (q) is quite different from Fln/(q) for
n> 3. That is, ro(2) (q) is an even fuiiction of q, while r(n) (q) for ni3 are nog
Then one might be worried about the arbitrariness of our theory. In fact, if
we apply[1] the Landau type argument to the present pgoplem, we obtain the tem-
perature dependence of q(2) quite different[1] from q(n/,for n ) 3, even in the
mean field theory. However, it ls sufficient that all q\n) yield the sarne
critlcal point and essentially the same physical picture of the spin-glass
phase transition. In fact we can easily show this consistency of the defini-
tions of various order parameters {O1rr;}.
,-,, Fo. this purpose we apply the Ldnilau type argument to the free energy

r|"'(o)-h"9, namely by minimizing it we obtain

z"(t) (r)e(r,) * sa(") (r)q?"1 * a"(t) (r)q?"1 *.., = h" (2.6)

Therefore, the response of g(.r) i" glven by the

e(,,) = *l:'n" ' *l:) = 1712c(n) {'r) 1.

spin-glass susceptibility X!l)as' "sg

If we use the microscopic expression (2.5), we arrive at

x 
(,r) 

= BN-r.. I "'i*u 
" . 

(o) 

" 
.(B) ,2, ___ ."ss :lrg,E=r i i cav

Of course, this formula can be obtained directly from the differentiation of
(2 .1) .

For simplicity, we now consider the case T ) T.n for the symmetric distri-
butlon P(-.lii) = p(llj). Then, from the 1ocal gauge"invariance, we obtain

(2.7)

(2.8)
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.(n) - .,(r-1) a T ..". ".r2,x"g - zll P.r. -l -j av

Therefore, alf 1{g) have the same singularity, which is expressed by the corre-
lation in the orifiianl system (say cr = 1). That is, all q1rrl yield the same
criticalrppirt and the same response to the symmetry breakin! field h", al-
Ehough q(n) themselves behave quite differently for n = 2 and for n j3 as is
easi-ly seen from (2.6).

Now we discuss the nonlj.near suceptibility 11] XZ defined by

, - Xoh + 1rh3 + ...

for the nagnetization m. It is well-known [11] that
Xo = B1r-q(2);

and

xr=#83.<M4>">..r=#93..v4r-3.M2r2r^u, e.12)
where M = fis... If the system has agai.n the local gauge invariance for the
symrnetric dis"tribution of Ji5, then we obtain

? - I '.>a2
Xr = -NBi I ..".. ".r'r^.. = -+: "(n)- i,j 

-i -j av 
"t"-ff 

X"e' (2'13)

above the spLn-g1ass transj-tlon point T"n and consequently it diverges negative-
1y at T = T"r+0, and also we have [12]

1 -l - ,)

XZ = -B-N 
* 

). .(<". s.>-<s.;'4s.))'>av.'z 
ij r_ J r_ J

1 -l -+ 2B-N - )...",><s.>(<s, s.>-<s-><s.>)>^-- + (lower terms). (2.14)
iilJlJliav

for T < T"n. For the Mattj-s model [12J,12 dlverges positively [13] just below
T"n. In gEneral frustrated spin syst.ems, the first tems in (2.14) is expected
to"be more dominant than the second term and consequently we may expect the
negative divergence [14 ^, 18] of Xz. More explicitly, we may assume the follow-

(2.e)

(2 .10)

(2 .11)

ing scaling relations

C, (R) = <(<s. s.>-<s.><s.r_LJ1J

/cr{n)adn = /"
Thus, the first and
scaling assumptions
determines the sign

". = /*-ff" t. 1*;

In non-frustrated systems,
gives a large contrlbution

n-fi" r, (n/E r

_n,)r., = R ''sf2(R/E)

(2 .Is)

(2.L6)

(2.L7)

(2 .18 )

same singularity under our
thequantity t = (2c2-c1)

(2.1e)

,)2, =av

C2(R) = <<s.><s.>(."i><"j>-<s.><s.

Therefore, we obtain

/crtn)adn = /*-ff" fr(*) ad".Ed-ffs

and
-^s f2 (x) adx.Ed-ffs

second terms in (2.14) give the
(2.L5) and (2.16). Consequently
of the divergence of X2, where

r ddx.

the quantity <si><si> in the second term j-n (2.14)
to XZ, because it i-s essentially the square of the

97



M. Suzurt et al'

spontaneous magnetizatj-on. As the frustration increases, it becomes smaller
and sma11er. Therefore, as the frustratj.on increases, the sign of the diver-
gence of X2 changes abruptly at a certaj-n point of 'tthe degree of frustrationrt,
if it is approprlately defined. Thus, Lre may call f the frustratlon parameter.
We may say that the system is intrinsic spln-g1ass, if f < 0, and that the
system j.s essentially spin-g1ass of Mattis-type, if f > 0. In this sense, Ehe
sign of the divergence of the nonlinear susceptibility X2 below the transition
point is essentlally important.

An application of the above formulation to the SK model 119] w111 be dis-
cussed 1ater.
53. Quenched Synnetry Breaklng Field

In this section we introduce a quenched symmetry breaking field h" by

Fo = -kur 'r{r"{"rl 8,,h,)roe I "-BoL{o)**lYr"rr^---{o". } "r- av

[17 ]

(3 .1)

(3.2)

B. When
The

(3 .4)

(3.s)

where
p-
quas i

This

wnere fl@) is the hamiltonian of the sysrem,

2(1o = -l r-.o-o. - nlo, ,
ij 1J r-J i1

and P({si},8',hr) denotes the probability distribution function of quenched
symmetry-breaking fie1d. Usual1y, it is glven by the canonical dlstrlbutlon
correspondi-ng to the same Hamiltonian 7e, (s) . The order parameter of the spin-
glass 1s defined by

e = 1im 1im <<<o.>U 
"3rg,ru., , (3.3)

h ++0 N+@
s

.<oi>B is the canonical average of 01 at the inverse temperature
B, ( Is reduced to q(2) in the annealed symmetry breaking field.
free energy Fq(C) for q fixed is given by

,Q(o) = -kBT... l .,r({"., },8',h')los. i p<i"ro.-x t)"-\ft(O, 
^u

Y D {si} ' {oi}i--

can be expanded again as

FQ(q) = FO(o) + 
"q2 

* dq4 * ... ,

which is an even function of q. Therefore, the spontaneous order parameter
ag(T) igngir.., by the solution 2cq9 + adqfl + ... = 0, i.e., e0 = Gc/2d)\/2 *
(Tc-T)Ltt h the mean field theoryi The Yesponse of q is givEn by q = XSeh" ,
where

o 1I
X"g = N rl-""t "5'g''oio3'B'., (3.6)

- ar-]

rf we take the limit B'- -(Tt = o), rhen X!- i" reduced ro Binderrs definition
IZO] of the spin-glass susceptibility. The'fionlinear suscepribility X2 1s also
defined by (2.72).

Now we may expect the following quite interesting situation ttrat Xts diver-
ges at a certain temperature T6 for a fixed large value of Bt, say Br = E,
although 1!rjl (or {2) do not diverge at flnite temperatures. If possible, i-t
corresponds"to a quasi (or non-equilibrium) phase transltion, because our formu-
lation of the quenched symnetry breaking field describes the short-time behavi-or
of the spin glass,as was mentioned in 51. That is, the possible singularity of
Xl* describes the transient phase transition, namely the freezing of spins in
some local minlmum state for short-time scale. In this sense, our formulation
yields the statistical mechanics of the spin-glass phase.
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54. Classifications of Spin Glasses

It may be convenient to elassify spin giass phases according to our formu-
lations as fol1ows.
i) 1tt clas^sification: There may be two types of spin glasses, namely A-type
in which Xfg i - (and also'1$ + o) at T = Tss and Q-type in which X& * - ,t
T =_Trg but Xf* = finite. Foi example, the M5ttis model [12] and rhe"SK model
[19J belong to-A-type, and rhe caylql tree rsing spin glass belong to Q-type
near T" at which Xlt diverges but XSn ir finite. This situation clarifies the
differqnce between-Ehe glass-like pf,Ese [2'l] and ROp f221.
ii) znd classification: As is discussed in 52, there are two types of diver-
gence of X2, namely positive or divergence for T -| Tss-0. Spin glass with
positive divergence (i.e., f > 0) is of Mattis type, End we call it "weakly
frustrated (or non-frustrated) spin glass". Spin glass with negative diver-
gence is intrinsically frustrated spin glass and we may call it Edward-Anderson-
Sherrington-Kirkpatrick (EASK) type. A typical example of EASK type is the SK
model
iii) :rd classification: one may also classify spin glasses accordingtowhether
there exists a pernanent local moment or not. If it exists, it can be a well-
defined order parameter to describe the spin glass phase, as in the SK model
and in the Mattis mode1. If it does not exist, then it is quite difficult to
define the order parameter even in the case of the existence of a phase tran-
sition and the transition point is defined only by the divergence of 12. This
case may be quite similar to the Kosterlitz-Thouless transition of the two-
dimensional planar model. There is another situation in which there occurs no
phase transition at all in the sense of equilibrium phase transition, but a
transient spin glass phase may appear as in the two-dimensional +J model.

If we combine the above three classification methods, thenwe may have some

clear vision for various different kinds of phenomena in random spin systems.

55. Discussions

fn the present paper, we have got around the difficulty that the minimiza-
tion of the Landau type free energy gives always a positive divergence of the
nonlinear susceptibility ItZ]. That is, we have used the microscopic expression
(2.14) of the noniinear susceptibility Xt rather than the phenomenologicit
relation between 'X2 and Xsp as in [17]. -

We have also applied 6ur two formulations to the SK model and we have
obtained a sharp saturation of the magnetic susceptibility in a certain region
of strength of the magnetic field. This sharp saturation is characteristic of
spin glasses. Details will be reported elsewhere [23].

The authors would like to thank Professor D.D. Betts for critical reading
of the manuscript.
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