
J. Phys. Soc. Jpn. 52 (1983) Suppl. p. 131-138

DYNA]'{ICS OF KINKS, INTERFACES, VORTICES
AND KINETfCS OF PHASE TMNSITIONS

K. Kawasaki, T. Ohta and T. Nagai*

Department of Physlcs, Faculty of Science,
Kyushu University, Fukuoka 812, Japan

*Department of General Education
Kyushu Kyoritsu University, Kitakyushu 807

Japan

A method is presented to derive stochastic equations of
motion of kinks, interfaces and vortex 1ines from
underlying nonlinear stochastic model fi-e1d equations.
The results are used to study klnetics of fluct.uation
in systems quenched to thermodynamically unstable states.

1. Introduction
In recent years importance of topological singularities such as kinks,

j.nterfaces, vortex 1ines, etc. has come to be widely recognized[l]. We here
present a method to derj,ve equaLions of motion obeyed by such si-ngularlties,
and we then illustrate usefulness of the approach in kinetics of first order
phase transitions.
2. Kinks

We explain the method for the following one-dimensional stochastic TDGL
equation

L./ r,,

where the random force
-dissipation relation,

<{aity'rzit't) = zkBTL(d,) f,12-z') f,G-t's (2.2)

t)=-t(ez)#" t {tz.tt e.t)
arlsing from thermal noise f(xrt) obeys the fluctuation

Here a dot denotes time derivative, D-,=D/0x and L(D_,) is a self-adjoint
posi-tive definite differential operat6r. H ig.\a coArse-gralned free energy
functional having the following general form: '

H:lr, {*ra-q)z + 7@t I
The explicit form of V(y) need not be given but we assume
type stationary state,

# = t -d: + flI//ry) )l = o

whose solution y=M- (x-x, ) gives an isolated kink proflle centered at x=x-. We

are interested in tn. 
"A"u 

of small kink width g>>1. In the presence ofamany
klnks, superpositions of kink solutions are no longer stationary unless
constrained by conservatj,on laws, but the kinks start to move due to kink-
kink interactions.

Derivation of equations of motion of kinks is conveniently carried out
by means of a variational formulation of (2.1) which takes the form

(2.3)

thatHhasakink-

(2 .4)

(2.s)

no confusion

IH tF lar'77-=7T - 7T
*) In the followi,ng we often omit arguments of functlons whenever
aris es .
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Here F is the Rayleigh dissipation functional given by

F{il=+liftlaz (2'6)

and AF is Lhe fluctuation functlonal defined ty Af=F{f}. Substitutlng into
F, H, aF the following ansatz for y near x=x- which 1s a superpositlon of
independent kinks which are numbered from left to right, we obtain

t --11;(z-zt) n 
!r,[n,a-zj)-r/,r-'ot] 

n {, I tltz-2,) -fl;(.o)) Q.7)

Here and after we take g to be sufficiently large so that kink widths are
negligibly smal1 compared with distances between kinks. We thus find j=
-Ii.M. r wj-Eh tt.'=au. /dx and11 1 1

rlil - Fnlil =* E (H,', L-'ttr')iri.7l- t ')
where K stands for kink and (X,Y)=,rx(x)y(x)dx. Slmilary, wirh f=-Io.M.', 0.
being a random force acting on the i-th kink, we find

LF{tl ) AFk{el =+E(r/,"clfir,)e;gi (2.s)
H{y} also reduces to Hr{x-} which is the potential energy of kink intelactions.
rn this way (2.5) can Ee donverted into the kink equation of motion as

_4 = 2+_ _ry (2.10)
, )/i 22i 2C;

The left hand side, the force acting on the i-th kink, is evaluated in
Appendix. When we have one type of klnks and antikinks, (2.10) gives [2]

E (ni, r'4')ti, - $) = - X Iftlrzrn, -2,.) r ftl(/,--t -2.)J ail v// Q.LL)])
where AM=M(6)-M(-@), Vr'=V'i1u1t-;), 6lt(x)=M(x)-M(-xsgn(x)) and M(x) is the
kink profile centered at x=0. Ju(x) is a sma11 exponential tail of the kink
profile. The fluctuation-dissj-pation relation for e, can be found by notlng
that the path probability of random forces is proportional ro expf- laf*6lat/Z4f)
as

< giugj ((') ) = z kyf [ ( Hz, ;/ n'|-t ], [tt-t')

where (M', L-1M') is a matrix whose ij-element is (M-.,, L-1M;,)
contains an extension of the method to a model with dn inertlial

A particularly sirnple case obtains when L is a constant.
equation of motion then assumes the following form in suitable

/, = R(Z;r, - li) - R /2, -zr-,) + f;
< f;ttl' H') ) = Z keT {i tlt - t't

(2.8)

(2.L2)

. Appendix
term.

The kink
units [2];

(2.t3)
(2.L4)

where R(x)=e ^r g is the attractive force between adjoining kinks, { being the
kink width. This equation can describe the growth of domains 1n quenched
effectlvely one-dimensional systems without conservation 1aw it (2,13) is
supplemented with instantaneous annihllation processes of kinks and antikinks
upon contacts. Here a relevant quantity is the average domain size.0(t)
which is proportional to the Bragg scattering intenslty [3] and is inversely
proportional to the number density of kinks, rfrlhermal noise predominates
over attractive forces 1n (2.13) we have !,(t)er'tL by diffusion. If
attractive forces are dominant, we expect .Q,(t)alng. This latter result is
obtained as fol1ows. If in the absence of interactlons all the klnks move,
with the constant speed v, the kink annihilation rate will be about v,Q,(i)-2
which leads to [(t)-9. In the presence of interactions, however, (2.13)
gives Eexpt-9,(D/El for the average relarive velocity of adjacenr kinks,
reducing the annihilation rate by the facror exp[-1,(t)/E]. Solving the
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F { iJ + FDH{ u l = l lfaoa4'qal p-r 
1 6,) t/(a) y(e.)

and similarly for AF where f-1 is a matrix whose aar-element is
(al r- t 

l a' ) = I az at, fl r( 
z - I rat ) I r 1 t- t 

1 r,2 n 1 7,_ 7? a7)
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resultant self-consistent equation for .Q,(f) leads to .Q,(f)c1nj. This behavior
seems to be supported by experiments [3]. See also the note added at the end.
3. Interfaces

tr'Ie now extend the approach of sec.1 to the following TDGL equation forscalar order parameter s(r.t) of higher spatial dimenslonality:
?-srr,t-r = - L(il WAI r /(r,t) (3.1)

where dt -' " ts ftr)
utst =/ [*(vS)2+ ittrst]ar G.2)
<fcfitfrrit)) = zk TLo)d(r-r't [rt-t') (3.3)

L(v) being a positive definite self-adjoint differenti-al operator. The vari-ational formulation of (3.1) is a straightforward extension of (2.5) and (2.6):
3H 

'F 
IdF-fi= T{- f (3.4); r{il.+[iLo)-tsar , aF=p{tl (3.s)

Instead of kinks r^/e now have interfaces. Only new feature here is that aslngle lnterface is stationary only in the absence of mean curvature (minimal
surface) where we have 6H/95=6. This gives the order parameter profile
r((z-z(a)) near the interface z=z(a) where z is a curviiinear coordinate in
normal direction to the lnterface where a denotes coordinates on the interface.
Thus we have

vS=o@)/7/G-ZcaD, j = -Lrz2f7/Jg-Zrat), f =-9rat/1'aZ-Z@t) (3.6)
where n(a) is the unit normal vector of the interface and v(a) is the normal
component of the lnterfacial velocity. (3.5) now reduces to

(3.7)

(3 .8)
DH stands for drumhead. The main driving force for interface motion here isits curvature. Then we find

H -> Ho, = a-A = r/aa (3.9)
)

where o="rdxMf(x)'is the surface tensi.on and A is the total interfacial area.
The interface equation of motion is now

Y!4 = tl,-l - [!.'* (3.10)[Z@) [Y(a) l9tat
Noting that -64/62(a)=K(a) is the mean curvature of the interface (3.10)
becomes

t/(at . n/, "t /' I /> Ktal ola' + Bta>.

The fluctuation-dissipation relatlon is
( qcat t 0(a't') ) = z kaT(al rl a') f,{t -t'1-

rn particular, when L is a constant, we have <alrl"t>=o-16(a-ar) and [6]
ttaz = LKtas t 0(a) (3.13)

As 1n the one-dimensional case, (3.11) or (3.13) can be made the basls forstudying kineti-cs of fluctuations 1n systems quench,ed into thermodynamically
unstable states. very recently (:.13) without 0(a) was used to compute thescaling function of the non-equilibrium order parameter pair correlation
[4]. Basic idea is to map S(rrt) with sharp variatj.ons near j.nterfaces lnto
another smooth function u(rrt) which vanishes on the interfaces. Statisticalproperties ot is) is obtai-ned by knowing rhat of {u}, and the latter can bestudied in the Gaussian approximation. The results are in i.mpressive

(3.rr)

(3. 12)
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agreements with the computer simulations of two and three dimensj-onal
kinetlc Ising models [5]. A part of the success, we fee1, may be ascribed to
the mapping from S to u which can be viewed as a mapping of a strongly
nonlinear problem to a \,reak1y nonlinear one. One surprlng fact in this
connectj-on we have uncovered recently is the asymptotical equivalence of pair
c.orrelations that are found here and in the weak coupling approach t7].
Howeverrit is not so surprlsing after all if we note that discarding certain
gradient terms in [7] can lead to formatlons of infinitely sharp phase
boundarieE in thg long time regime. The pair correlation obtained is
(2/n)sin -exp(-x'/4) with x a scaled distance.

The present interface model has
and to binary cri-tica1 fluids [9].
4. Vortex Lines

been extended to conserved systems [8]

In this section we apply our general approach to the Pitaevskii model of
superfluid He11um which takes the form [10]

i,r,t,=-|ffi + frrr,tt (4.1)

where L=L.*i, (L,>0), with the atomi-c mass of Helium chosen to be unity and tf
is the cofiplex o*der parameter. The coarse-grai-ned free energy is

H{*l =*far[*lvl12 + Xt..lf (]t|t'- r)l <+.r>

fr(r,t) is the random
-*<$c'tff,

For our purpose i-t 1s
equatlons (4.1) has in

*=(li ' t=
(4.1) then becomes

fu1 to make explicit the fact
ct tr4ro lndependent components

fi) r=(''o*'r,o-,)

use
fa

force satisfying

(r:t')> = zL, h.eTf,c'r')f,ll'f '), (4.3)

that the complex
by introducing

(4 .4)

(4. 6)

(4.7)

+l (4. s)

where a dagger denotes a Hermitian conjugate and H is now expressed in terms
of Yt and Y. (4.5) can be cast into the following variational form

[4F-TT
t,'(r,t).P-" *tr,t)

and AF=F{8,6}.

Here, nonuniform stationary states Y0 ot U0 are those wlth a single
straight vortex line which satisfy

# = # - [-*r, + 9o{,t'- t ) ]y" = o,

i=-r #
- f,H. 

=[*,

rlY yl = Jar ft

tr
tE'

with

(4. B)

Other states Y with different vortex line configurations are no longer
stationary. Denoting poslti-ons of vortex lines by r(e) and its velocity by
v^(z) where ris the parameter along vortex lines, we make the ansatz:

L

,L = -V2t-o,r{ E = -Q1o.r!
and similarly for q and E. Then we find

F + Fvtl 4, ql = ffi fa, It,EQtzt-vlrrt r i.4t.;x q(rs J

(4.e)

(4.10)
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and similarly for AFr, where vo and Vo are replaced by 6o and gr,
respectively, which h?e the raodom fortes acting on vorte* linesf where K is
the unit vector along a vortex line and E:E^*1nR/r^. Here E^ is some finite
number, and R and rn are some characteristiS l"rrgtfl of rro.te9 configurati.on
and vortex line corE radius, respectively [11]. H now reduces to the free
energy of vortex lines \, given by

Hvz = t/lo.r.'E#id Q/t,t't2/tr')
rrhere rc is the circulation of a quantized vortex line and r'U(f)=drn(G)/d't,
The stochastic vortex line equation of motion is now

- $Hq = [F,r _ [aFut
I tZrcl - [u4o -[ 01tzt

^i+i=-L(e,)# +{.

(4.12)

or more explicitly,

vl - vr,.(rr) = # tr,tt, + E ir, i ) r h(0, -z'eorxi 1(4'13)

where v ,(r^) is the component of the superfluld velocity v"(rn) at rn
perpe.,diEullr to the vortex line with

?)r{r) = - *lr. Qktx" n:d, (4.14)

Similar equation as (4.13) without random forces has been derived by Onuki by
a different method [12].

We have not been able to use the vortex equatlon of moLion derived here
for phase transition problems although this kind of equation has been
successfully applied to superfluid turbulence [13]. An intfresting
possibility is to consj,der the dynamics of rotating liquid 'He suddenly
quenched below the ). temperature [14].
5. Concluding Remarks

In the preceding sections we have obtained stochastic equations of motion
for some representative types of singularities from the underlying nonlinear
field equations. However, these nonlinear field equations themselves are
often highly idealized models of real systems whereas these t.opological
singularities have meanings golng beyond these idealized contlnuum models.
Hence there 1s a problem of understanding these topologi,cal singularities on
the basis of more realistic possibly discrete models. On the other hand, we
sti1l face a formidable statistical problem of understanding macroscopic
behavior on the basis of topological singularities [1, 15].
Appendix

Here we extend the method of Sec.1 to the following stochastic fleld
equation with the inertial term added to (2.1):

(4.11)

(A.1)

Since the analysls closely paral1e1s that of Sec.l we only indi-cate nel4,

aspects arising from introductlon of the inertia term. Here we must al1ow a
single kink moving with a constant veloci-ty v instead of a stationary kink
described by (2.4). Thus we have for the l-th kink,

[rq'ej -42, ]fl/trt =lo,)[a! -tl/"tfl;a))]nila), (A.2)

Hence M-(x) also depends upon v-. Then, besides H we also need a Lagrangian
{=K-H, t being a rtkinetic errerg}" given by

x=#/it-'i ax (A'3)
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(A.1) now becomes with Ea=8/3t

"[z.,,7T +

Ustng (2.6) we find

!ar7rt{
t/

i = 7(-iiHi'* irnv)
'F= 1V-

(A.4)

(A. s)

to v. On the other
in terms of kink

(A. e)

,) are

I ] (A.10)

where a superfix v denotes differentiation with respect
hand f remains the same as in Sec.l. Therefore we find
variables {x. , v. },t-1

K*{zvirl =; i[1n1,r'n')irl. -r 6n;',t-\')i,i * (il,u, L-'niUy] <o.a

and similarly for f*=(1/m)\. At* remains unchanged. H now reduces to
Hn{x,v}.

In deriving the kink equations of motion from (A.4) we consj-der virtual
infinitesimal variation of y due to infinitesimal variatlons of x- where the
variables {v* } are kept f ixld treating *- and v-. as thoug!-lglepel@r
variables. ttun the kink 

"qu"Efor]=-oT---otion 
i"t@

, )d* 2dk )Fx )aFr4t*-;i=77-;or- (A.7)

Here v and'i are held fixed in carrying out partial differentiations (3t,
however, acts on all the varlables). Thus, for example, we have

-er # . # = - m ! [fn,',c/n!)i) - (n', t-tn")1? (a.a)

+ z(flrr, t-rn.")ir$ l

+ = t [ (t1;'' L-'n' )i, - ( Hi" r'ry: ) t ]
where we have ignored terms of O(rizrV) slnce time variations of {v
sma1l. Next we turn to H*, for which we have with (2.3)

# = - /r"ita: (n, + t/,) t f I v'rn;t + $; v"o1;) t !/ori

where we have split y of (2.7) as Mi*6yl and have introduced Vnli by

Vi; = V'(HittIi)-t/1ni1-[!;l/"cn;) (A.11)

Vn1j. starts out with second power of the small quantity 6y-. Integrating
by parts and dropping terms which drise from boundarj-es we*obtain using (A.2)
afi (2.7)

# = i, lar ni;' I , 1u,o)2)i - /r'), Jtgo - 3la, n/a/,i. (A.12)

Substituti"nC (A.8), (A.9), (A.l-2) into (A.7) and using

m (4')z(tli', L-tflio) - u,-0 (H,:, L-ttlr'S = o (A.13)

whlch follows from (A.2) we finally obtaln

f{ Cni,L-'n;)[^* * %-rr'-t) -^(/1/,r'n")[%'-tur:1'] 
.j ' (A.14)

+zm(t1,/,1-tn;")fi - tni,ttn"4 | = 2laxniv,i,
which is basically identlcal to that found in [2]. There the right hand side
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of (A.14) is also evaluated and 1s found to produce the right hand side of
(2.11) for the special case considered.
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Note added:

We have numerj-calIy solved (2.13) with f-=0 for the system of the length
A=2,1000 times { to obtain the average domaintsize l,(t)=A/N(t), where N(t) is
the number of kinks and antikinks. The initial spatial distributions of kinks
and antikinks {x-(0)} have been given by sets of random numbers. Whenever
one kink and one-antikink contact each other N(t) decreases by two. We show
in the figure on the next page the result for N(0)=7000, .0(0)=3, E=1, which
well supports the qualitative argument of Sec.2 predicting l(t).1n a.
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IIEAN DISTANCE BET}IEEN KINKS 1

ltO= 7000 A0= 3. 00000 l,l- 1. 00000 DLOGIO tTl - 0. 01000

4.00 5.00
LoG10 tTt
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