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A method is presented to derive stochastic equations of
motion of kinks, interfaces and vortex lines from
underlying nonlinear stochastic model field equations.
The results are used to study kinetics of fluctuation

in systems quenched to thermodynamically unstable states.

1. Introduction

In recent years importance of topological singularities such as kinks,
interfaces, vortex lines, etc. has come to be widely recognized[l]. We here
present a method to derive equations of motion obeyed by such singularities,
and we then illustrate usefulness of the approach in kinetics of first order
phase transitions.

2. Kinks

We explain the method for the following one-dimensional stochastic TDGL
equation

SHW
42 1)

where the random force arising from thermal noise f(x,t) obeys the fluctuation
-dissipation relation,

CFr ) F2 ) > = 2kgTL(3,) Fn—x") d4-27) 2.2)

Here a dot denotes time derivative, 8 =0/0x and L(9_) is a self-adjoint
positive definite differential operator. H i§)a coarse-grained free energy
functional having the following general form:

H=fax [ L(24) + gep) | (2.3)

The explicit form of V(y) need not be given but we assume that H has a kink-
type stationary state,

G- +qvip )y =o k<
whose solution y=M, (x-x,) gives an isolated kink profile centered at x=x,. We
are interested in the case of small kink width g>>1. 1In the presence oflmany
kinks, superpositions of kink solutions are no longer stationary unless
constrained by conservation laws, but the kinks start to move due to kink-
kink interactions.

Yox,t)= —L(3) r Loz 2.1)

Derivation of equations of motion of kinks is conveniently carried out
by means of a variational formulation of (2.1) which takes the form

__SH_ _ SF _ 44 (2.5)
¢ IF: o

*) In the following we often omit arguments of functions whenever no confusion

arises.
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Here F is the Rayleigh dissipation functional given by
. / —— 2.6
Flg) =+ [dr'§ax (26

and AF is the fluctuation functional defined by AF=F{f}. Substituting into
F, H, AF the following ansatz for y near x=x, which is a superposition of
independent kinks which are numbered from left to right, we obtain

=M (z-z,) + L. [/‘;./x-zg)—r;(-m] + ) [/\1}.[2-5.)-/;./@] (2.7
Fof J<i

Here and after we take g to be sufficiently large so that kink widths are

negligibly small compared with distances between kinks. We thus find y=

3% M ' with Mi'EdMi/dx and

FIf) = Bofit = £ & (M0, OG0 2% @)
iF

where K stands for kink and (X,Y)Z/X(x)Y(x)dx. Similary, with f=-50.M.', 0,
; . . : . ii i
being a random force acting on the i-th kink, we find

SFff] » 4K [6] = z—’g(ﬂ,-’, )68 (2.9)

H{y} also reduces to H {xi} which is the potential energy of kink interactions.
In this way (2.5) can ge converted into the kink equation of motion as

M D _ 2% (2.10)
‘ 22 Z. 24 ’
The left hand side, the force acting on the i-th kink, is evaluated in
Appendix. When we have one type of kinks and antikinks, (2.10) gives [2]

z (17,0107 =8) =~ 3 [ S0, =20 + My -2p) ] 4T v7 (2210

where AM=M(w)-M(-), V''zV'"' (M(+x)), M(x)=M(x)-M(wxsgn(x)) and M(x) is the
kink profile centered at x=0. §M(x) is a small exponential tail of the kink
profile. The fluctuation-dissipation relation for §, can be found by noting
that the path probability of random forces is propor%ional to exp[—fdﬁdwdyﬁh7j
as

<GB (9> = 2kgTL(M5 071707 ] Jt2-¢7) (2+12)

=1 -
where (M', L "M') is a matrix whose ij-element is (M.', L lM»'). Appendix

contains an extension of the method to a model with an inertial term.

A particularly simple case obtains when L is a constant. The kink
equation of motion then assumes the following form in suitable units [2];

i,- - K(Z‘f/“‘)-’,‘)"‘R(Z"—’Z'—I)+)‘1' (2.13)
<;€-/f)7j./f')>= z/e,Tfy- {et-¢% (2.14)

where R(x)=e_x/‘E is the attractive force between adjoining kinks, & being the
kink width. This equation can describe the growth of domains in quenched
effectively one-dimensional systems without conservation law if (2.13) is
supplemented with instantaneous annihilation processes of kinks and antikinks
upon contacts. Here a relevant quantity is the average domain size £ (t)
which is proportional to the Bragg scattering intensity [3] and is inversely
proportional to the number density of kinks. IE/Ehermal noise predominates
over attractive forces in (2.13) we have 2(t)«=t by diffusion. If
attractive forces are dominant, we expect £ (t)xlnt. This latter result is
obtained as follows. If in the absence of interactions all the kinks move
with the constant speed ¥, the kink annihilation rate will be about v2($)~
which leads to 2(t)=t. In the presence of interactions, however, (2.13)
gives Vexp[-2(4)/E] for the average relative velocity of adjacent kinks,
reducing the annihilation rate by the factor exp[-2(t)/E]. Solving the

2
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resultant self-consistent equation for 2(t) leads to 2(t)=<lnt. This behavior
seems to be supported by experiments [3]. See also the note added at the end.

3. Interfaces

We now extend the approach of Sec.l to the following TDGL equation for
scalar order parameter S(r,t) of higher spatial dimensionality:

2 Scrt) = — Loy SHISW) (3.1)

where 3 IScere) 7 f(r't)
HISY=[[£(Vs)% 4+ 3¢5y ]ar (3.2)
CIROFr 29y = 2k, TLw) 711 ft-27) (3.3)

L(V) being a positive definite self-adjoint differential operator. The vari-
ational formulation of (3.1) is a straightforward extension of (2.5) and (2.6):

dH _§F  J4F 9. : -1¢ =
TEs s g G FIslsd[SiwmiSar  AF = Ff) (3.5)

Instead of kinks we now have interfaces. Only new feature here is that a
single interface is stationary only in the absence of mean curvature (minimal
surface) where we have §H/8S=0. This gives the order parameter profile
M(z-z(a)) near the interface z=z(a) where z is a curvilinear coordinate in
normal direction to the interface where a denotes coordinates on the interface.
Thus we have

vS=n@M(Z-Zw) , S =-v@Mlg-Zw@), f=-0ar/1(7-2a)) (3.6)

where m(a) is the unit normal vector of the interface and v(a) is the normal
component of the interfacial velocity. (3.5) now reduces to

FIS} > Byfv]=+ [[dade’<alr~!]o’s via) vea's (3.7)
and similarly for AF where I' = is a matrix whose aa'-element is
e[r~'la’> =f[¢zaz’r7’(z-zm)) P LY dM(r-202)) (3.8)

DH stands for drumhead. The main driving force for interface motion here is
its curvature. Then we find

H > H,y =0A= a-fow. (3-9)
where OEfdxM'(x)2 is the surface tension and A is the total interfacial area.

The interface equation of motion is now

_SHow _ SFew _ JdFou (3.10)
§Z(a) Jvi) §@) :

Noting that -JA/S8z(a)=K(a) is the mean curvature of the interface (3.10)
becomes

V(a;:r/(alf‘/a’)/(m’) da’ + 8(a), (3.11)
The fluctuation-dissipation relation is
vyl 7 s .1.2
COat)8a’ty > = 2 kyT<al Imla’s S(2-27). (3. 122
In particular, when L is a constant, we have <a’T|a'>=o_l6(a—a') and [6]
Vi) = LK) + Bca) (3.13)

As in the one-dimensional case, (3.11) or (3.13) can be made the basis for
studying kinetics of fluctuations in systems quenched into thermodynamically
unstable states. Very recently (3.13) without 0(a) was used to compute the
scaling function of the non-equilibrium order parameter pair correlation
[4]. Basic idea is to map S(r,t) with sharp variations near interfaces into
another smooth function u(r,t) which vanishes on the interfaces. Statistical
properties of {S} is obtained by knowing that of {u}, and the latter can be
studied in the Gaussian approximation. The results are in impressive
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agreements with the computer simulations of two and three dimensional

kinetic Ising models [5]. A part of the success, we feel, may be ascribed to
the mapping from S to u which can be viewed as a mapping of a strongly
nonlinear problem to a weakly nonlinear one. One surpring fact in this
connection we have uncovered recently is the asymptotical equivalence of pair
correlations that are found here and in the weak coupling approach [7].
However,it is not so surprising after all if we note that discarding certain
gradient terms in [7] can lead to formations of infinitely sharp phase
boundaries in thg long time regime. The pair correlation obtained is
(2/m)sin “exp(-x"/4) with x a scaled distance.

The present interface model has been extended to conserved systems [8]
and to binary critical fluids [9].

4. Vortex Lines

In this section we apply our general approach to the Pitaevskii model of
superfluid Helium which takes the form [10]

L, ANy
bt =~ L 70 T e

where L=L_+i, (L,>0), with the atomic mass of Helium chosen to be unity and ¥
is the complex order parameter. The coarse-grained free energy is

* f?{r,t) (4.1)

HiY) =L far [LIvP 1P+ 919120 L1p1P-1) ] %.2)
fw(r,t) is the random force satisfying
HUr Iy (2> = 2L ke THCr-r 04 t6 =2, 4.3)

For our purpose it is useful to make explicit the fact that the complex
equations (4.1) has in fact two independent components by introducing

‘lf=(}’fi) ; § /2‘) [ = ("0“‘ 4,:) (4.4)

(4.1) then becomes
. H
f=-/’~yi‘7r+s‘ (4.5)

where a dagger denotes a Hermltlan conjugate and H is now expressed in terms
of ¥" and Y. (4.5) can be cast into the following variational form

_dH _ _SF_ JeF (4.6)
T2 AT TR T

with )
FIY ¥] = [ar Elorty. ™ gere) (4.7)
and AF=F{zZ,c}.

Here, nonuniform stationary states WO or wo are those with a single
straight vortex line which satisfy

ff:/' 'J}b* T -2 AR 1Y =0, LB

Other states Y with different vortex line configurations are no longer
stationary. Denoting positions of vortex lines by r(z) and its velocity by
VQCT§ where - is the parameter along vortex lines, we make the ansatz:

. .

¥ =-yw-v¥ , §=-Gory (4.9)

and similarly for ¢ and T. Then we find

F"FVLfF(,Ul] /dT[L,E (T)-Yy(vs # - v )XV,(T)] (4.10)

lélz
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and similarly for AF L where v, and V_ are replaced by ©, and © 5 A
respectively, which are the ran&om forCes acting on vorteX lines, where K is
the unit vector along a vortex line and E~E +1nR/r_ . Here E_ is some finite

number, and R and r  are some characteristic lengtg of vortex configuration
and vortex line core radius, respectively [11]. H now reduces to the free
energy of vortex lines HVL given by
|
s / L7
H,, = -2 /d'rd‘c — L /(t) - AT (4.11)
w %) | (o) = re)]

where Kk is the circulation of a quantized vortex line and r'(17 =dr CT)/d7
The stochastic vortex line equation of motion is now

$Hu JFuy JfaFu,
- = - 4,12
N 7Yas, Yo §6,(7) ( .

or more explicitly,

A / 2
- - x
U - vu(h) = {le( ’l + EU XIC) o /l/z(ﬁ, é/E’?X )(4.13)

where v l(r ) is the component of the superfluid velocity Vs(rﬁ) at r,
perpend1cular to the vortex line with

|
- X fat T
Uscry = = J5 faT Gloxv e (4.14)

Similar equation as (4.13) without random forces has been derived by Onuki by
a different method [12].

We have not been able to use the vortex equation of motion derived here
for phase transition problems although this kind of equation has been
successfully applied to superfluid turbulence [13]. An interesting
possibility is to consider the dynamics of rotating liquid He suddenly
quenched below the A temperature [14].

5. Concluding Remarks

In the preceding sections we have obtained stochastic equations of motion
for some representative types of singularities from the underlying nonlinear
field equations. However, these nonlinear field equations themselves are
often highly idealized models of real systems whereas these topological
singularities have meanings going beyond these idealized continuum models.
Hence there is a problem of understanding these topological singularities on
the basis of more realistic possibly discrete models. On the other hand, we
still face a formidable statistical problem of understanding macroscopic
behavior on the basis of topological singularities [1, 15].

Appendix

Here we extend the method of Sec.l to the following stochastic field
equation with the inertial term added to (2.1):

my 44 = -4/2,)3‘% + f. (A.1)

Since the analysis closely parallels that of Sec.l we only indicate new
aspects arising from introduction of the inertia term. Here we must allow a
single kink moving with a constant velocity v instead of a stationary kink
described by (2.4). Thus we have for the i-th kink,

2 2 7
[my2d, -vdy 1M (x) =L 05 -3V H:20) ] M, 2, (A.2)
Hence M, (x) also depends upon A Then, besides H we also need a Lagrangian
Z=K-H k being a "kinetic energy given by
.- oy
K = 7”’/#4 4 dx (8.3
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(A.1) now becomes with BtEB/Bt

_ g 4L i< _ _$F _ JaF (A.4)

59 §y 14 iF

Using (2.6) we find

: - ey Y (A.5)
o« E(Gn s G

where a superfix v denotes differentiation with respect to v. On the other
hand f remains the same as in Sec.l. Therefore we find in terms of kink
variables {xi, Vi}’

.. P . - = .. L, V0l
Kk{zzm.fv} =zl"§:[(/‘1;,é //Z_/)Il_/s_ _2(/11.’,4 /,,/_v)z’,g + (/71.”)4 /Z )1{/%] (A.6)

and similarly for FK=(l/m)Kk' AFK remains unchanged. H now reduces to
Hk{x,v}.

In deriving the kink equations of motion from (A.4) we consider virtual
infinitesimal variation of y due to infinitesimal variations of x, where the
variables {v,} are kept fixed treating x. and v, as though indepefident
variables. hen the kink equation of motion is formally written as

5 2k 2%k | Pk 2%«
t 5% ' oz " 5z7 4 (A.7)

Here v and ¥ are held fixed in carrying out partial differentiations (9t,
however, acts on all the variables). Thus, for example, we have

Lo 2K, ke N
PR
+ 207, LT, )Zj’f ]
2——_Fk =) [(,41‘/[-/”-/)2;. (M’ l—%‘p)é ] (A.9)
22’; j () 7 y, ) ; /

where we have ignored terms of 0(vZ4,¥) since time variations of {v,k} are
small. Next we turn to HK’ for which we have with (2.3) +

m——— /. v
izk = ‘/"“ & {9;(/‘7;* §4:) + g [viti) + 54 Very; ) + V,,,,-]} (A.10)

where we have split y of (2.7) as Mi+<5y:.L and have introduced Vnli by
b
Vagi = V(M +8%:) = Vir;) - 84 V7r;) (A.11)

Vnli starts out with second power of the small quantity Jy.. Integrating
by parts and dropping terms which Arise from boundaries we obtain using (A.2)
and (2.7)

24, ’ -t ; S U
5% 3%,-/““’.-& [mcuerof =30 e - pfax @b @an
Substituting (A.8), (A.9), (A.12) into (A.7) and using
m (g (ML) - Yy L) =0 (A.13)

which follows from (A.2) we finally obtain
P - 7 . 0 2 ~f ” MZ—(U.’)ZJ
M. [ m v -vt-0 ] - m (M, )Y 7
2;:[ ‘ J [ 4 J 4 ) (18

tem (), ) py - (A AGASL | = 3 [ax 11 Vags

which is basically identical to that found in [2]. There the right hand side
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of (A.14) is also evaluated and is found to produce the right hand side of
(2.11) for the special case considered.
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Note added:

We have numerically solved (2.13) with f =0 for the system of the length
A=2,1000 times & to obtain the average domain’size 2(t)=N/N(t), where N(t) is
the number of kinks and antikinks. The initial spatial distributions of kinks
and antikinks {x (0)} have been given by sets of random numbers. Whenever
one kink and one'antikink contact each other N(t) decreases by two. We show
in the figure on the next page the result for N(0)=7000, 2(0)=3, &1, which
well supports the qualitative argument of Sec.2 predicting 2(t)«ln t.
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