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COHERENT STRUCTURE FORMATION OF VORTEX FLOW AROUND A SINK
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Measurements of the spatial distribution of the angular momentum for

a vortex generated around the sink reveal that the spatially coherent
vortex is organized from random streams produced on the external bound-
ary. The two-dimensional flow simulation based on the Navier-Stokes
equation has been carried out for comparison with the experiment.

1. Introduction

A fluid flowing centripetally toward a sink in the bottom of a vessel has
a tendency to form a spiral vortex around it. Large scale of vortices of this
kind in meteorology are tornadoes, cyclones and typhoons which are produced by
a constant supply of energy from strong local convection. The formation of
vortex is maintained by providing a constant energy, so that it is regarded as
an example of dissipative structure presented by Prigogine [1]. The stability
of the dissipative structure of vortex depends on the amount of flow Q flown out
per unit time through the sink; for small values of Qthe vortex is not generat-
ed or unstable temporally and spatially even if it is generated, while forlarge
values of Q, alargescale coherent structure of vortex flow is generated [2,3].

When we consider quantitatively the spatial ordering of a dissipative struc-
ture, it is desirable to know the spatial mean value and fluctuation of adissi-
pative quantity concerned. Thus, in order to check the spatial order of vortex,
we have measured the two dimensional distribution of the flow velocity on the
surface of glycerin-water solution, by means of the floating method using Al
powder as a tracer and obtained the mean value of the azimuthal velocity and
its fluctuation on circles of various radii with the centre at the sink. For
comparison with experimental results, a computer simulation based on the Navier-
Stokes equation expressed in terms of polar coordinates has been carried out.

2. Experimentals

We used two vessels for this experiment; one is in the shape of a rectangle
and the other has a dodecagon shape. In the case of rectangular vessel (120
cmx30 cm), the flow is flown out through a orifice (8 mm¢) in the centre of
the bottom and the same amount of flow is supplied through two intakes located
at both ends of the rectangle. Examples of streamlines of flow for three val-
ues of the amount of discharge Q are shown in Fig. 1. For small value of qQ,
many small vortices appear but their distribution is very unstable. TFor Q=137
cc/sec, we can see four vortices around the sink; a diagonal pair of the top-
right and the bottom-left turns clockwise and another pair of the top-left and
the bottom-right turns counterclockwise. With increasing amount of discharge,
the superior pair overcomes the other pair and the four vortices are unified
into a single vortex. Then, the velocity of vortex flow increases and the flow
pattern becomes coaxial circles about the sink.

In order to obtain an isotropic inflow, we made another vessel of the do-
decagon shape as shown in Fig. 2. Each of twelve intakes attached to each side
of the dodecagon feeds an almost equal amount of flow and the total amount of
flow is flown out through the sink. Photograghs of streamlines of flow with
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this dodecagon shape vessel is shown in Fig. 3. In this case, as Q increases,
a single vortex is found to occur immediately following an unstable flow. We
have measured the azimuthal velocity vg from the length of each trace within a
circle of radius 12 cm around the sink in these photograghs and obtained its
distribution as a function of distance r from the centre of the sink. Further
we have calculated the distribution of the angular momentum L=rvg.

Results of v, and L are shown in Fig. 4. Note that the scattering of
points represents the spatial fluctuation and not the temporal fluctuation. In
these cases where a single vortex is developed, in the range of r<lZ cm the
mean value of vg is nearly inversely proportion-
al to r, thus the angular momentum is nearly
conserved. The mean values of vg and L in-
crease as Q increases. As for the fluctuation
of the angular momentum, it decreases with de-
creasing r; this means that the spatial coher-
ence of vortex gets better when the flow ad-
vances toward the central sink.

‘1Q=59.86c/s
W V=2.8 cSt

It is noticeable that for large value of Q,
the spatial fluctuations Ave and AL are enhanced
and the relation between Avg and Q was found to
be given by

<Av62> oc  Q° (1)

r =const

from a series of data. In general, in hydro-
dynamical systems, a supply of flow into the
system is thought to be accompanied by flow
velocity fluctuation, since a flow randomization
at the inlet of the system is brought about by a
dismatching of the flow impedance between the
outside and the inside of the system. The vari-
ance of fluctuation in such an open system may be
proportional to the square of the mean flow,
that is, the power supplied to the system.

3. Computer Simulation

The vortex flow around a sink has a three-

dimensional structure; vg takes a large value "306” /
= ce/s

near the surface of the fluid, while it is re- .

strained near the bottom, and the z component of ' v=2.8 cSt
flow also arises around the sink. Using the two Fig. 1. Streamlines around
dimensional flow approximation, however, we have the sink in the rectangular
tried to simulate the behavior of vortex which vessel. Q is the amount
we saw in the preceding section. We start with of discharge flow through
the Navier-Stokes equations expressed in terms the sink and v the kine-
of polar coordinates [4], matic viscosity.
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Fig. 2. Dodecagon shape Fig. 3. Streamlines around the sink in the
vessel. dodecagon shape vessel.
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Fig. 4. The distribution of the azimuthal velocity vg and the angular
momentum L=rvg in the dodecagon shape vessel.
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where p is the density, p the pressure and V the kinematic viscosity. Here we
divide the radial velocity V, into the mean value -Q/2mr and the perturbation
vy, and for Vg we take only the perturbation vg, that is,

Vy = -Q/2Tr + v, (5)

Ve = Ve (6)
By substituting (5) and (6) into (2) and (3) and taking account of the conti-
nuity relation (4), we get the following equation for the perturbations vy and vg,
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We impose a spatially random but time invariant boundary codition for Vg and a
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zero value condition for vy on the external boundary circle. According to the
empirical law (1), we took the random values of vg on the boundary to be propor-
tional to the amount of discharge Q. A typical example of steady state flow
pattern in case of Q/2m=2.0 and v=0.2 is represented in Fig. 5. Both of the
clockwise and counterclockwise streams are given on the external boundary cir-
cle, but on advancing toward the central sink, the counterclockwise stream
which is accidentally superior to the other on the boundary predominates and
develops into a coherent vortex near the sink.

The distributions of vg and L are shown in Fig. 6. A comparison of the r
dependences of the mean value in Fig. 6(a) and (b), indicates that the conser-
vation of angular momentum is not fully satisfied for small value of Q and it
becomes more perfect for large Q. The spatial fluctuation of the angular mo-
mentum produced on the boundary circle is found to be smaller as the flow ad-
vances toward the central sink; this is in qualitative agreement with exper-—
imental results shown in Fig. 4. It should be noticed, however, that when Q is
kept constant an organization of coherent vor- Q/2m=20
tex is more remarkable for large value of ki- v=0:2
nematic viscosity v.

Though the present computer simulation el . ¥
is based on the two-dimensional flow approx- /// . . . \\\
imation, it has qualitatively accounted for the J - ; %
formation of coherent vortex from the random " -, Xy ’f N \
boundary flow. An extension to the three-di- / ~ \\ 42::\‘
mensional flow model would be desirable for a N \.‘:§k> NN ALY
more complete agreement. ) = /
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Fig. 6. Computer simulation of the distribution of vg and L.
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