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COHERENT STRUCTURE FORMATION OF VORTEX FLOW AROUND A SINK
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Technology, Oh-okayama, Meguro, Tokyo 152, Japan

Measurements of the spatial distribution of the angular momentum for
a vortex generated around the sink reveal that the spatially coherent
vortex is organized from random streams produced on the external bbund-
ary. The two-dimensional flow simulation based on the Navier-Stokes
equati-on has been carried out for comparison with the experiment.

1. Introduction
A fluid flowing centripetally toward a slnk in the bottom of a vessel has

a tendency to form a spiral vortex around it. Large scale of vortices of this
kind in meteoi:ology are tornadoes, cyclones and typhoons which are produced by
a constant supply of energy from strong local convection. The formation of
vortex is maintained by providing a constant energy, so that it is regarded as
an example of dissipative structure presented by Prigogine [1]. The stability
of the dissipative structure of vortex depends on the amount of flow Q flovm out
per unit time through the sink; for smal1 values of Q the vortex is not generat-
ed or unstable temporally and spatially even if it is generated, whilelorlarge
values of Q, alargescale coherent structure of vortex flow is generated [2r31.

When we consider quantitatively the spatial ordering of a dissipative struc-
ture' it is desirable to knovi the spatial mean value arrd fluctuation of a dissi-
pative quantityconcerned. Thus, in order to check the spatial order of vortex,
we have measured the two dimensional distribution of the flow velocity on the
surface of glycerin-water solution, by means of the floating method using A1
powder as a tracer and obtained the mean value of the azimuthal velocity and
its fluctuation on circles of various radii with the centre at the sink. For
comparison with experimental results, a computer simulation based on the Navier-
Stokes equation expressed in terms of polar coordinates has been carried ouE.

2. Experimentals

We used thTo vessels for this experiment; one is in the shape of a rectangle
and the other has a dodecagon shape. In the case of rectangular vessel (120
cmx30 cm), the f low is f 1or,m out through a or:ifice (8 nmO) in the centre of
the bottom and the same amount of flow is supplied through two intakes located
at both ends of the rectangle. Examples of streamlines of flow for three val-
ues of the amount of discharge Q are shovrn in Fig. 1. For smal1 value of Q,
many sma1l vortices appear but their distribution is very unstable. For q=137
cc/sec, r^7e can see four vortices around the sink; a diagonal pair of the top-
right and the bottom-1eft turns clockwise and another pair of the top-left and
the bottom-right turns counterclockwise. With increasing amount of discharge,
the superior pair overcomes the other pair and the four vortices are unified
into a single vortex. Then, the velocity of vortex flow increases and theflow
pattern becomes coaxial circles about the sink.

In order to obtain an isotropic inflow, we made another vessel of the do-
decagon shape as shovrn in Fig.2. Each of twelve intakes attached tb eachside
of the dodecagon feeds an almost equal amount of flow and the total amount of
flow is flovrn out through the sink. Photograghs of streamlines of flow r,rlth
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this dodecagon shape vessel is shor^rn in Fig. 3. In this case, as Q increases,
a single ,oit.* is found to occur irunediately following an unstable flow. [a]e

have measured the azimuthal velocity v6 from the length of each trace within a

circle of radius 12 cm around the sink in these photograghs and obtained its
distribution as a function of distance r from the centre of the sink. Further
we have calculated the distribution of the angular momentum L=rvg.

Results of vg and L are shornrn in Fig' 4' Note that the scattering of
points represents"the spatial fluctuation and not the temporal fluctuation. In
thu"" .."." where a single vortex is developed, in the range of r<12 cm the
mean value of v0 is nearly inversely proportion-
al to r, thus tEe angular momentum is nearly
conserved. The mean values of vg and L in-
crease as Q increases. As for the fluctuation
of the angular momentum' it decreases with de-
creasing r; this means that the spatial coher-
ence of vortex gets better when the flow ad-
vances toward the central sink.

It is noticeable that for large value of Q'
the spatial fluctuations Avg and AL are enhanced
and the relation between Avg and Q was found to
be eiven bv

.Alrer, x, Q,
: = const

from a series of data. In general, in hydro-
dynamical systems, a supply of flow j-nto the
system is thought to be accompanied by flow
velocity fluctuation, since a flow randomizatj-on
at the inlet of the system is brought about by a

dismatching of the flow impedance between the
outslde and the inside of the system. The varj'-
ance of fluctuation in such an open system may be
proportional to the square of the mean f1ow,
that is, the power supplied to the system.

3. Computer Simulation

The vortex flow around a sink has a three-
dimensional structure; ve takes a large value
near the surface of the f1uid, while it is re-
strained near the bottom, and the z component of
flow also arises around the sink. Using the two
dimensional flow approximation, however, we have
tried to simulate the behavior of vortex which
we saw i.n the preceding section. We start with
the Navier-Stokes equations expressed in terms
of polar coordinates [4],

(1)

Fig. 3. Streamlines around
dodecagon shape vessel.
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Fig. 1. Streamlines around
the sink in the rectangular
vessel. Q is the amount
of discharge flow through
the sink and v the kine-
matic viscosity.

Fig. 2. Dodecagon shape
vessel.
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(a) Q=187 (cc/sec)

V=2.1(cstokes)

(b ) 6=4,11(cc/sec)
v=24(c stokes)
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$?=F*,,-[+.,).%".,#, ]# * ["" *,.q& -,s**,r'-, #J + e)

q;P= 
[t* v).,6+, ('#*,k)].,,

Eve'l r a2'c avevrve "oHJ = +v=5;E - "'tf. (8)

We impose a spatial-ly random but time invarlant boundary codition for v0 and a
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Fig. 4. The distribution of the azimuthal velocity ve and the angular
momentum L=rvO in the dodecagon shape vessel.
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and the continuity equation

avr Vr 1 }Ve____=_+ J= o,arrrdu

where p is the density, p the plessure and v the kinematic viscosity. Here we

divide the radial velocity V, into the mean va1_:ue -Q/Znr and the perturbation
v., and for V6 we take only the perturbation vQr that is,

V, = -Q/2nr +v. (5)

Ve = ve (6)

By substituting (5) and (6) lnto (2) and (3) and taking account of the conti.-
nuity relation (4), we get the following equationfortheperturbationsvsandve,
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zero value condition for v. on the external boundary circle, According to the
empirical law (1) 

' we took the random values of vg on the boundary to b- propor-
tional to the amount of discharge Q. A typical 6xample of steady state flow
pattern in case of Q/2r=2.0 and v=0.2 is represented in Fig. 5. Both of the
clockwlse and counterclockwise streams are given on the external boundary cir-
c1e, but on advancing toward the central sink, the counterclockwise stream
which is accidentally superior to the other on the boundary predominates and
develops j"nto a coherent vortex near the sink.

Thedistributionsof v6 and L are shown in Fig, 6. A compari.son of the r
dependences of the mean value in Fig. 6(a) and (b), indicates that the conser-
vation of angular momentum is not fu11y satisfied for sma11 value of Q and it
becomes more perfect for large Q. The spatial fluctuation of the angular mo-
mentum produced on the boundary circle is found to be smaller as the flow ad-
vances toward the central sink; this is in qualitative agreement with exper-
imental results shown in Fig. 4. rt should be noticed, holrever, that when Q iskept constant an organization of coherent vor-
tex is more remarkabre for large value of ki- o/2IT=2'0

nematic vi-scosity v, 
i ur ^r- v=0'2

Though the present computer simulation
is based on the two-dimensional flow approx-
imhtion, it has qualitatively accounted for the
formation of coherent vortex from the random
boundary flow. An extension to the three-di-
mensional flow model would be desirable for a
more complete agreement.

References

[1] c. Nicolis and I. Prigogine: Selforganiza-
tion in nonequilibrLum sys tems (Wi1ey, L977) .

[2] T. Kawakubo, Y. Tsuchiya, M. Sugaya andK.
Matsumura: Phys. Lett. 68(1978)65.

[3] T. Kawakubo, S. Kabashima-and y. Tsuchiya:
Prog. Theor. Phys. Suppl. 64(197g)150.

[4] L.D. Landau and E.M. Lifshitz: FluidMechan-
ics (Pergamon, London, 1959).

. .\/\\ ,\ \r\

^'-t5il,,')
\,t ,/

'tt/
u,

': /l'

Fig. 5. Co*prra..'simrf"tion of
the coherent vortex formation
when a random flow is given on
the external boundary circle.

(a) Ot2n =1.2
v =0.5

I

Fig. 6. Computer simulation of the distribution of v6 and L.
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