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CHAOTIC STATES IN DRIVEN FERROMAGNETS
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A study on nonequilibrium states of driven ferromagnets is
developed. A global stability analysis of fixed lines (i.e.,
steady states) and the associated variation of the stable:
attractors are presented, by changing the strength of the
interaction between "Cooper pairs'" of spin waves. The
puzzling wide-spread spectrum of driven modes pointed out by
Gottlieb and Suhl and by Anderson is now attributed to the
onset of chaotic behaviors of these modes. The Feigenbaum's
scaling constant and the Poincaré section beyond the
accumulation point are also given.

Parametric amplification phenomenon of spin waves in driven ferromagnets is
pointed out to be a typical example of "broken symmetry in dissipative
structures" [1]. In our preliminary report, we have studied nonequilibrium
states of ferromagnets under a strong parallel pumping field beyond the Suhl
threshold[2]. 1In contrast with the situation encountered in the broken symmetry
in equilibrium states, the condensation involving not just a single isolated
mode but two (or, more precisely, finite number of) modes with wave vectors
confined to the resonance surface has been found to be operative so as to cause
either periodic or nonperiodic temporal variations in the intensities of these
modes[2]. This phenomenon resembles that of rippled patterns in sand on the
seashore with their directions showing periodic or nonperiodic temporal
variations according to unsteady directions of the wind[1].

On the other hand, a stochastic temporal behavior of the magnetization in
the driven YIG has received growing experimental interests among Russian groups
[3],[4], although neither a strange attractor nor the route towards it has not
to date been obtained. Tt is therefore highly desirable to develop further our
previous study.

In this paper, we present a global stability analysis of fixed lines and
the associated variation of the stable attractor, by changing the strength of
the interaction between "Cooper pairs' of spin waves. We then calculate the
Feigenbaum's constant § in the period-doubling region and show the Poincaré
sections of the strange attractor beyond the accumulation point. As before[2],
we employ the symmetric two-modes model, assuming the presence of predominant
humps in the state density around two different wave vectors within the resonance
surface. In the post-threshold region, dynamics of parametrically excited
spin-waves pairs is described by the equations for real and imaginary parts of
"Cooper pair' densities Oj(j=l,2):
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where mj = Re 05 » Zi= Imo; . Here we have rewritten the equation of motion in
[2],[3]. noting the asymptotic conservation law rﬁ = m?+ Qf where n: denotes
the intensity (population) of the j-th mode. In equations (la) and Elb), G,3")
is (1,2) or (2,1). vy and Aw are the dissipation rate and the off-resonance
frequency between the spin-wave energy and one-half of the frequency of the
external field with magnitude hV, respectively. S,T and S',T' are the diagonal
and nondiagonal interactions between '"Cooper pairs', respectively; S' retaines
the phases of these pairs, while T' destroys them. A set of equations (la) and
(1b) are the four-dimensional autonomous equations. Their stable fixed points
are the states where collective excitations reminiscent of second sound of spin
waves are expected to appear.
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Global stability diagram of fixed lines. Each rectangle

has 3 rows: The top is a trivial fixed line in the text, while the
middle and bottom being the asymmetric and symmetric ones,
respectively. Their abscissa denotes hV. The hatched part is
stable, while the remaining one being unstable. The transition from
a stable part to an unstable one (or vice versa) occurs at hoV, Vv
and h2V for fixed lines associated with the top, middle and bottom
rows, respectively; hoV= (y%+ Aw?)! 2, h,V= [y2+{ Aw( S+T+S-T')/( S
+T-SHT' ) 12112 hov= [ y2 4 { 20wS'/( S+T-S'+T' )}2]1/2,

For continuously varying values of hV, we obtain a sequence of fixed points,
i.e., fixed lines[2]. Besides the trivial fixed line (n;=n,=0), one symmetric
(n1=ny#0) and two asymmetric (n;# 0, n,=0 and vice versa) fixed lines have been
provided [2] in the physicallv relevant region (n; , n, 20) for particular values
of S'and T'. Here we show in figure 1 a global stability diagram of these lines
for various values of S'and T' under the condition S+T>0 and Aw<0. Tn contrast
with well-studied dissipative systems(e.g. Lorenz system), the present system
always involves more than one stable fixed points for any value of S',T'and hV.
Despite this fact, the computed temporal evolution of equations (la,b) shows the
presence of the periodic or nonperiodic (chaotic) stable attractor coexisting
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Figure 2. Variations of periodic or chaotic attractor. The upper

and lower parts~are its projections onto n; -n; and m; - £; planes,

respectively. 1In each attractor, the values S' and T' employed are
given by marks X and the value of hV is indicated by the arrow ¥

on the rectangle in figure 1.

with these points (see figure 2), except for the region where the symmetric
fixed line is stable. Figure 2 indicates the strong sensitivity of the
attractor to the values of S' and T'. The interesting variation of the
attractor can be expected to occur in the vicinity of some of the boundary
region in figure 1 where fixed points exhibit marginal stability, which will be
described elsewhere. Figure 3 shows in the period-doubling region the external-
field dependence of the value m; for the set of points on the Poincaré section
of the plane %;=0 with m; >0. It shows a typical bifurcation diagram, from
which we estimate the Feigenbaum's constant as = 4.675 and the accumulation
point as hwV/y=5.571; The previous value for the latter [2] has been a bit
improved here by the present high-precision computation. The final figure

shows the Poincare section of the attractor for increasing values of hV beyond
hoV for the same values S' and T' as used in figure 3. We find that a band-
merging transition leads to a developed strange attractor. A careful examination
of the Poincaré section reveals the presence of the stretching and folding
mechanism operating during constructing the strange attractor. This mechanism
makes the dimension of the attractor fractal. Further increase of the magnitude
hV can induce a hyperchaotic behavior, whose structure as well as an associated
Lyapunov spectrum will be described elsewhere. Finally it should be mentioned
that the puzzling wide-spread spectrum of the driven modes pointed out in [1]
and [5] is reasonably attributed to the onset of chaotic behaviors described

in the present article.
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