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A studv on nonequilibrium states of driven ferrornagnets is
developed. A global stability analysis of fixed lines (i.e.,
steady sLates) and the associated variation of the stable'
attractors are presented, by changing the strength of the
interaction between ttCooper pairstt of spin waves. The
prtzz]-ir.g wide-spread spectrum of driven modes pointed out by
Gottlieb and Suhl and by Anderson is now attributed to the
onset of chaotic behaviors of these modes. The Feigenbaumts
scaling constant and the Poincar6 section beyond the
accumulation point are also given.

Parametric ampllfication phenomenon of spin waves in driven ferromagnets is
pointed out to be a typlcal example of "broken syfinetry in dissipative
structurest' [1]. In our preliminary report, we have studied nonequi.librium
states of ferromagnets under a strong paralle1 pumping field beyond the Suhl
threshold[2]. In contrast with the situation encountered in the broken symnetry
in equilibrium states, the condensation involving noE just a single isolated
mode but two (or, more precisely, finite number of) modes wlth wave vectors
confined to the resonance surface has been found to be operatJ,ve so as to cause
either perlodic or nonperiodic temporal variations in the intensities of these
modes[2]. This phenomenon resembles that of rippled patterns 1n sand on the
seashore with their directlons showing periodic or nonperiodlc temporal
variatlons according to unsteady directions of the wind[1].

On the other hand, a stochastic temporal behavlor of the magnetizatlon in
the driven YIG has received growj-ng experimental interests among Russian groups

t3],14], although neither a strange attractor nor the route towards it has not
to date been obtained. It is therefore highly deslrable to develop further our
previous study.

In this paper, we present a g1oba1 stability analysis of fixed lines and

the associated variation of the stable attractor, by changing the strength of
the interaction between t'Cooper pairs" of spin waves. We then calculate the
Feigenbaumrs constant 6 in the period-doubling region and show the Poincar6
sections of the strange attractor beyond the accumulation point. As before[2],
we employ the symmetric two-modes model, assuming the presence of predominant
humps in the state dens.ity around two different wave vectors within the resonance
surface. ]n the post-threshold region, dynamics of parametrically excited
spin-waves pairs is described by the equations for real and imaglnary parts of
"Cooper pairl densities o3 (j=1,2):
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+ ( hV* S'mir) ( tnj' * R3 F,
where mi = Re oi,9,i = rmoi . Here we have rewritten the equation of motion in
[2]'[3].- noting- the'asympt'otic conservation 1aw n?= m?+ 04 where n; denores
the intensity (population) of the j-th mode. rn e'quati.on" if.) ana dft), (j,j,)
is (1,2) or (2,1). Y and Atl are the dissipation rate and the off-resonance
frequencv between the spin-wave energy and one-ha1f of the frequency of the
external field with magnitude hv, respectively. s,T and sr,Tt are the diagonal
and nondiagonal interactions between "cooper pairs", respectively; sr retaines
the phases of these pairs, while Tt destroys them. A set of equatlons (1a) and
(lb) are the four-dlmenslonal autonomous equations. Thelr stable fixed points
are the states where collective excitations reminiscent of second sound of spin
waves are expected to appear.

(lb)

v
T

@

@

o
@

@

@

@

@

o
o
@

o
@

@

@

@

W
@
@
@v--.,7P...-.1

@
W
ffi
@1
?777177--1

Figure 1. G1oba1 stability diagram of fixed 1ines. Each rectangle
has 3 rows: The top is a trivial fixed line in the text, while the
middle and bottom being the asymmetric and symmetric ones,
respectively. Their abscissa denotes hv. The hatched part is
stable, while the remainlng one being unstable. The transition from
a stable part to an unstable one (or vice versa) occurs at h6v , h1v
and hzV for fixed lj.nes ass-ociated v;ith the top, middle and bottom
rows, respecrively; hoV : 1 y2 + Arr-r2; 

t/ 2, :nrv = I y2 \{ Ao( s+t+st-f )/( s
+T-S+Ti )j')'t' , hzy = | y'+ { 2AoS'/( S+T-S'+T' )}rl, /, .

For continuously varying values of hV, we obtain a sequenee of fixed points,
i.e., fixed lines[2]. Besides the trivial fixed line (n1=nz=0), one symmetric
(nr=nz# 0) and two asymmetric (nrl 0 , nz= 0 and vice versa) flxed'1ines irave been
provided [2] in the physlcallv relevant region (nr , nz>0) for particular values
of Sr and Tr. Here we show in figure 1 a g1oba1 stability diagram of these linesfor various values of St and Tr under the condition S*T>0 and Ao<0. In contrast
with well-studied dissipatlve svstems(e.g. Lorenz svstem), t.he present system
always involves more than one stable flxed points for any value of St ,Tt and hV.Despite this fact, the computed temooral evolution of equations (1a,b) shows the
presence of the periodic or nonperiodic(chaotic) stable attractor coexisting
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Figure 2, Variations of periodlc or chaotic attractor. The upper
and lower parts are 1ts projections onto nr -n2 and mr --tr planes,
respectively. In each attractor, the values St and Tt employed are
given by marks x and the value of hV is indicated by the arrow *
on the rectangle in flgure 1.

with these points (see figure 2), except for the region where the symmetric
fixed line is stable. Figure 2 indicates the strong sensitivity of the
attractor to the values of Sr and Tr. The interesting variation of the
attractor can be expected to occur in the vicinity of some of the boundary
region in figure 1 where fixed points exhibit marginal stability, which will be
described elsewhere. Figure 3 shows in the period-doubling region the external-
field dependence of the value m1 for the set of points on the Poincar6 section
of the plane .0r= 0 with mr > 0 . It shows a typical bifurcation diagram, from
which we estimate the Feigenbaumrs constant as 6= 4.675 arrd the accumulation
point as h-V/y=5.57L; The previous value for the latter [2] has been a blt
improved here by the present high-precision computation. The final figure
shows the Poj"ncare section of the attractor for increasing values of hV beyond
hoV for the same values Sr and Tr as used in figure 3. We find that a band-
merging transj"tion leads to a developed strange attractor. A careful examination
of the Poincar6 section reveals the presence of the stretching and folding
mechanism operating during constructing the strange attractor. This mechanism
makes the dimension of the attractor fractal. Further increase of the magnitude
hV can induce a hyperchaotic behavlor, whose structure as well as an associated
Lyapunov spectrum will be described elsewhere. Finally it should be mentioned
that the przzllng wide-spread spectrum of the driven modes pointed out in [1]
and [5] 1s reasonably attributed to the onset of chaotic behaviors described
in the present article.
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Figure 3. Bifurcation diagram
for Sr/y= - 0.9,1' /y=- 3.0
( s+T ) ly = 2.0 Abscissa and
ordinates are hV/y and m1 ,
respect ively.

Figure 4. Poincar6 section
beyond h&V. St and Tt are
the same as in figure 3.
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