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A magnetic phase diagram for the simple hexagonal Ising lattice
is calculated by use of the cluster variation method. The effect
of the interaction between adjacent sites along the hexagonal
axis (the intrachain interaction) is investigated. An existence
of the antiferromagnetic intrachain interaction changes consid-
erably the characteristics of the phase diagram, whereas that of
the ferromagnetic one does not. The temperature dependence of
sublattice magnetizations is also calculated.

1. Introducti-on
The Ising model on a simple hexagonal lattice is of theoreti-ca1 and experi-

mental interest because it provides a phenomenological model for ordering phe-
nomena in a variety of substances. A typical example is a magnetic ordering in
CsCoCl3 [1] and CsCoBr3 [2]. Another example is an ordering of interstitial
atoms in metals with hexagonal close-packed structure [3]. It is sometlmes con-
venient to regard the lattice as a regular stack of the basal planes of the tri-
angular lattice or as a set of chains along the hexagonal axis whlch form the
triangular lattice. We use the terms ttintraplane" and I'intrachain" rather than
the terms "interchain" and'rinterplane". This paper deals with the simple hex-
agonal Ising lattice with the intrachain nearest-neighbor (nn) interaction J6,
the intraplane nn interact.ion J1 and the intraplane next-nearest-neighbor (nnn)
interaction J, 1n the presence of an external magnetic field H. The Hamiltonian
of the present system i-s given by

nn nnn
H = Jt("e[[o^.o^*1i + 2l .I9^ror. + crl Io..o.. - zrr[[o^-) (;1ro;, (1)""ii 

^ar 
r i'i^r^K iin"

where the suffix ), refers to the basal plane; the suffices i, j and k refer to
the sites of the triangular lattlce in the basal plane; oli is the Ising spin
operator at the site specified by ). and i, taking the value +1 or -1; o,0 and cr

are the ratios of 2Jg and 2J2 t.o J1, respectively; h is the reduced magnetie
fleld defj.ned by h=V]F,l2Jt, U being the magnetic moment of a single spin; the sum
over i and j in the second term and that over i and k j.n the third term are tak-
en over all intraplane nn and intraplane nnn pairs of sj.tes, respectively.
Throughout this paper, we assume that Jl is positive (antiferromagnetic) and J2
is negative (ferromagnetic). The sign of J6 is either positive or negative.

The finite temperature problem for the J0=0 case (the triangular Ising lat-
tice) has been discussed by many authors. Mekata has examined the Jg=H=6 

"u""within the molecular field approximation (MFA) and has shown that the paramag-
netic (P), partially disordered (PD), three-sublattlce ferrimagnetic (3FR) and
two-sublattice ferrimagnetic (2FR) phases appear successively with decreasing
temperature [4]. However, recent results of the Monte Carlo calculation by Wada
et al. [5] and those of the application of the cluster variation method (CVM)

[6] by the present authors [7] suggest that the PD and 3FR phases are not ther-
modynamically stable phases. On the other hand, neutron scatterj.ng measurements
on CsCoCl3 and CsCoBr3 have demonstrated that there exists a temperature region
where the PD phase appears [1,2]. Therefore, 1t is expected that the intrachai-n
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interaction, which is predominant i-n CsCoCl3
and CsCoBr3, may promote the stability of
the PD phase. Shiba has carried out a cal-
culation for the J6>0 and H=0 case by treat-
ing the intrachain interaction exactly and
the intraplane (interchain) interactions
within the MFA and has shown that Mekatars
picture of the successive phase translti-ons
is not changed so much [B].

The purpose of tfris paper is to calcu-
laLe a magnetic phase dlagram of the system
described by the Hamiltonian (1). We also
alm at investigating the effect of the in-
trachain interactlon on the phase dJ.agram,
focusing our attention on the stability of
the PD phase. In 52, the ground state is
analysed by use of the method of inequali-
ties [9] to find the type of ordered phases
which must be stable at 1ow temperatures.
In 53, we calculate the phase diagram with
the six-sublattice model shown in Fig. 1 by
applying the CVM [6]. Calculations are car-
ried out within the j-ntraplane nn equi-later-
al triangle plus intraplane nnn equilateral
triangle plus intrachain nn pair approximation (TTPA). It ls shown that the an-
tiferromagnetic intrachai-n interaction promotes the stability of the PD phase,
whereas the ferromagnetic one does not. The temperature dependence of subla!-
tice magnetizations 1s also calculated. Concluding remarks are glven in 54.

2. Ground State

The ground state of the present system can be determined rigorously by the
method of inequalities [9]. In what follows, we assume h]0. It is shown that
four phases can appear in the ground state. The spin structures of these phases
are expressed in the following way. We first decompose the triangular lattice
in the basal planes into three sublattices, called the A, B and C sublattices,
as shown in Fig. 1. Then, we have eight types of the basal planes wit.h spin
configulations specified by (o6,oB,oC) as a:(-1r+1,+1); b:(*1,-1,*1); c:(+1r+1,
-1); f:(+1,+1,+1);5:(*1,-1,-1);6:(-1,+1,-1); E:(-1,-1,+1); E:(-1,-1,-1), The
spin structures of the above four phases are eventually represented by stacking
sequence of the planes as (i) -f-, (ii) -a-b-, -a-b-c-, etc., (jii) -a-E- and
(iv) -a-, where we list repeating units and non-equivalent structures only. It
should be noted that there are infinite numbers of degenerate spin structures in
phase (ii) because the structures in which each plane is of a, b or c type and
adjacent planes are of different types have the same energy. When Jg>O (oO>0),
phases (Iii), (ii) and (i) appear for 0sh<hc1=og1 hgt<h<hs2=o0+6 and hs2<h, re-
spectively. Ltren J9<0 (o6<0), phases (iy) and (i) appear for 0<h<hg3=6 and
hca.h, respectively. In the latter case, h=0 is a phase boundary at which the
-a- to -E- first-order phase transition occurs.

We consider here a decomposition of the lattj-ce into sublattices. Because
of the degeneracy of phase (ii), we have no sublattice model which can reproduce
all of the spin structures appearing in the ground state. The simplest model
which can reproduce the spin structures of phases (i), (iii) and (iv) and some of
those of phase (ji) is the slx-sublattice model shown in Fig. 1. In the model,
the basal planes are classified into two subplanes, rramely, the X and Y sub-
planes, where we refer to a set of every second plane as X and another set of
the remaining planes as Y. The above spin structures can be written as (i) X=Y
=f, (ii) X=a, Y=b, (iii) X=a, Y=6 and (iu) X=Y=a. With this classification, the
hexagonal lattice is decomposed into six sublattices, ca1led the XA, XB, XC, YA,
YB and YC sublattices. This six-sublattice model, though it is inadequate to
deal with the degeneracy of phase (ii), witl be used in the calculation of the
phase dlagram in the next section.

Fig. 1. Classification of the
basal planes and decomposition
of the triangular lattice in
the basal planes. Large and
small circles are lattice sltes
on the X and Y subplanes, re-
spectively. Open, ful1 and
shaded circles correspond, re-
spectively, to the A, B and C

sublattices i-n each subplanb.
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3. Phase Diagram

We now turn to the calcula-
tion of the phase diagram by use
of the CVM [6]. In the calcula-
tion, we employ the TTPA men-
tioned 1n the Introduction. It
is noted that the TTPA gives the
exact results for the J1=J2=0
case (the linear chain) and the
TTA results obtained in ref, 7

for the J6=0 case (the triangu-
lar lattice). Adopting the six-
sublattice model discussed in
the prevlous section, we have
twenty-nine variational parame-
ters. These are six sublattice
magnetizations, denoted as xXA,
xXB, xXC, xyA, xyB and xygr and
correlation functi-ons associated
with six intraplane nn pairs,
six intraplane nnn pairs, three intrachain nn pairs, two intraplane nn triangles
and slx lntraplane nnn triangles. Minimization of the free energy with respect
to the above variational parameters leads to a set of tvrenty-nine simultaneous
non-linear equations which determine these parameters. Using the method dis-
cussed in ref. 7, we have solved the equations with a(=2J2/J1) fixed at -0.2 and
with cr6?2JO/JL) at -6.0 or +6.0. In the following discussions, we use the re-
duced temperature t defined as L=k;,Tl2JI, kB being the Boltzmann constant.

When h=0, we can derive four non-equivalent solutions for both the o9=-6.9
case and the oO=46.0 case. The sublattice magnetizations in these four solu-
tions are represented by using three order parameters, xl, x2 and x3, as (xXA,
xlgr x16)=1(xy4, xygr xy6):(x1, x2' x3), where the upper and lower signs corre-
spond to the tr9=-6.0 and o6=*6.0 cases, respecti-vely; the four solutions are
characterized as (I) xi=x2=x3=0, (1I) x1=-x3>0, x2=0, (Itr) xi>x2>0, x3<0 and (n/)
x1=x2>0, x3<0, which correspond, respectively, to the P, PD, 3FR and 2FR phases
mentj-oned in the Introduction. Therefore, we refer to solutions (I), (tr), (m)
and (IV) as the P, PDI (PDII),3I'RI (3FRtr) and 2FRI (2FRII) phases, respectively,
for the 00=-6.0 (crg=+6.0) case. In the 00=-6.0 (cr9=+6.0) case, the P to PDI
(PDtr), PDI (PDtr) to 3FRI (3FRII) and 3FRI (3FRtr) to 2FRI (2FRtr) second-order
phase transitions have been found to occur, respectively, at t=tg1=6.959, t=t52
=4.549 and t=tp3=4.534. The temperature dependence of the order parameters xI,
x2 and x3 for tte lo9l=6.0 cases is shown in Fig. 2.

In Fig. 3(a), we show the resulting phase diagram for a=-O.Z and o9=-6.9 in
the (h, t) p1ane, representing the reglons where each of four phases is stable.
The regions are called by the names of the stable phases. The 3FRI region'
which is the segment from t=tN2 to t=t1q3 on the t axis surrounded by the PDl re-
gi-on, is not shown in the figure, since the difference between tp2 and t113 is so
sma1l that 1t cannot be drawn. Comparing this phase diagram with the one for
a=-O.2 and og=0, whlch is shown in Fig. 7 of ref.7, we may say that the charac-
teristics of the phase diagram is not changed by the existence of the ferromag-
neti-c intrachain interactlon.

Figure 3(b) shows the calculated phase diagram for q=-0.2 and oo=+S.9. A1-
though there exists a narrow 3FRII region between the 2FRtr and PDII regions, we
omit 1t in the figure, since it is too namow to be drawn. It is noted that all
calculated phase boundary lines, except the 1ow temperature part (t<2.6) of the
phase boundary line between the 2FRII and 3FRtr phases, are second-order phase
boundary lines within the numerical accuracy. It is interesting to note that
the PDII phase in which the sublattice magneti-zations are given as xXA=xyC' xXB
=xyg and xXC=xyA can be turned continuously lnto the -c-a- structure of phase
(ii) at t=0 without undergoing a phase transition. Since the reglon where the
phase corresponding to the PD phase is stable becomes larger' we may say that
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ture t of the order parameters x1 I x2 and
x3 calculated for h=0, cr=-O.2 and lojl=0.0.
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Fig. 3. Temperature versus magnetic field phase diagram obtained for (a) cr=

-0.2, o9=-6.0 and (b) o=-0.2, ag=*6.0 within the TTPA. The solid and dashed
lines represent the calculated phase boundary lines of flrst-order and sec-
ond-order transiti-ons, respectively, and the dotted lines show extrapola-
tions to t=0. In (a), the 3FRI region, which is a segment from t=t12 to
t=tN3 on the t axis is omi-tted. In (b), the narrow 3FRII region between the
2FR-t' and PDII regions is omitted and the boundary line between the 2FRII and

3FRII phases is shown.

the existence of the antiferromagnetic intrachain interaction Promotes the sta-
bility of the PD phase.

Although the numerlcal calculation cannot be performed at very Iow tempera-
tures, the calculated phase boundary lines shown in Fig. 3 can be extrapolated
naturally to t=0 in such a way that the resulLs of the ground state analysis in
the previous section are reproduced.

4. Concluding Remarks

The phase dlagram for the simple hexagonal Ising lattice is calculated by

applying the CVM. Calculations are performed within Lhe TTPA. We show that the
antiferromagnetic intrachain i-nteraction promotes the stability of the PD phase,

whereas the ferromagneti-c one does not change the characteristics of the phase

diagram. As mentioned before, however, the present six-sublattice rnodel is in-
adequate to deal with the degeneracy of phase (ii) of the ground state. It is
possible rhat ordered phases with long period modulation aPPear at 1ow tempera-
tures in the PDII region. Details of thls work will be published elsewhere.
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