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A Monte Carlo simulation is carried out on the
triangular Ising system in which the
antiferromagnetic nn interaction J and the
ferromagnetic nnn interaction J' exist. The
temperature dependences of sublattice quantities
(magnetizations, energies, susceptibilities and
specific heats) are calculated. Three singular
temperatures are estimated for several values of
the interaction ratio R = J'/J, and the phase
diagram is obtained.

1. Introduction

Recently, the Ising model on the triangular lattice with the
nearest neighbour (nn) and next nearest neighbour (nnn)
interactions, J and J', has interested many people as a candidate
of new type of ordered phase. The ground state of the system with
the antiferromagnetic. J (<0) and the ferromagnetic J' (>0) is
known to be the two-sublattice ferrimagnetic (F.,) state [1].
Mekata [2] proposed a possibility that the partgally disordered
(PD) phase appears in the finite temperature region by the mean
field approximation when J < ¢, J' > 0 and R(=J'/J) > - 0.4. The
PD phase is defined by the property that the one of the
sublattices loses its averaged magnetization and the other
two-sublattices magnetize in opposite directions. Mekata [2] also
showed that the three-sublattice ferrimagnetic (F,) state appears
in the temperature regiocn between F, and PD phases.

Mekata and Adachi [3] and Yoshizawa and Hirakawa [4] carried
out magnetic studies on single crystals of Ising-like material
CsCoCl,. They observed the unusual temperature dependence of the
magnet%c reflection intensity by the neutron scattering above
13.5K, and it was interpreted as the appearance of the partially
disordered phase in the temperature region (13.5K < T < 20.82K).

Kaburagi et al [5] carried out the cluster variation method
of the system, and they showed that PD phase appears even when R <
- 0.4. The feature that the critical value of R does not exist is
different from that by the mean field approximation [2]. It is a
guestion at this stage whether the mean field approximation or the
cluster variation method derive an appropriate phase diagram and
transition temperatures for the well frustrated system.

On the other hand, Wada et al [6] carried out the Monte Carlo

(MC) simulation of the system for R = - 0.1, and claimed that the
PD phase will not be realized as an equilibrium state, since the
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interchanges of roles of sublattices occur frequently.

The purpose of the present paper is to clarify these problems
by the Monte Carlo simulation, to estimate the singular
temperatures which characterize the phase transitions among
possible phases and to obtain the phase diagram of the well
frustrated system.

2. Model and Method of Simulation

The Hamiltonian of the system is given by

= = GOy = J a. 03 (1)
}6 = I<§> v j<k;i7 k V&
where J and J' are the nn and nnn interactions, and <ij> and <ko>
denote nn and nnn pairs of spins, respectively. We denote J'/J by
R, and we consider the case of J<0, J'>0.

We divide the e
lattice into three o)
sublattices &, B, 9. At
the first temperature we
set the spin
configuration to be the
two-sublattice
ferrimagnetic state as
the initial state and we
take the gradual heating
and cooling method. We
adopt the periodic
boundary condition and
carried out the
simulation over the
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In the Monte Carlo
simulation, we see that
the roles of three
sublattices interchange
with finite time
intervals. To evaluate
thermal averages of
sublattice quantities
beyond the trivial
interchanges of the

% B LY I .

Fig. 1. A result of the present simulation when
roles og thr?e R(EJ'/J) = - 0.2. ™ and P denote the o -sublattice, O
sublattices in the and > denote the A-sublattice, @ and P> denote the

ini r-sublattice, and @ and P denote the total system.
finite SYStem’ we rename is show;x in Fig. 2. Each plotted values are

each sublattice so as to zﬁ@s;ned from the arithmetic means of the heating and
follow the spontaneous cooling processes.

sublattice interchange

(see details in [7]). We then calculate the thermal averages of
the magnetizations and the energies of the three sublattices and
of the total system over the Monte Carlo steps (MCS) = (300, 500)
or (300, 1500) at each temperature, where MCS as the relaxation
process is 300 (discarded) and MCS as the thermal equilibrium
process is 500 or 1500. Susceptibilities and specific heats are
calculated from fluctuations of magnetizations and energies,
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respectively.
3. Results
Simulations are carried out for R(= J'/J) =0, - 0.2, - 0.4,

- 0.6, - 0.8, - 1.0. Figure 1 shows a result of the temperature
dependence of sublattice magnetizations (a), and sublattice

susceptibilities (b), when R = - 0.2 with MCS = (300, 1500).
Figures 2 and 3 show the susceptibility and the specific heat of
the total system for (a) R = - 0.2, (b) R =- 0.6, and (c) R = -

1.0, respectively. We see from these figures that the four states
appear: the paramagnetic (P : T > Tl), partially disordered (Pd :
T,< T < T,), three-sublattice ferrimagnetic (F, : Ty< T < T2), and
t%o—subla%tice ferrimagnetic (F2 : T < T3) stages.

2.0, 1.0

Xiot Lot
k
1.0 1.0
Xtot Crot
k
0. L] 0.
1.0 1.0
Xiot Lot
k
o. 3. TGT, T e x| .. o. 3T, T) .- OZT 9.
Fig. 2. The susceptibility of the Fig. 3 The specific heat
. 3. of the tot
total system ’X_to . xtot tends to system C . Cp is expected to 2
diverges at T,°0y, N%2%24 x 24, heati i ket akqt
9 St N2 Ry e % o eating diverge T, and seems to have a cusp
process; <, = X , cooling at T,., The meanings o
process; A, N = 36 x 36, heating as i}l Fig. 2. g E BRIGOLE NEs SWpR

process; O, N 36 x 36, cooling

process.

We estimate the three singular temperatures T,, T,, T, for
each value of R as follows. T, is estimated from the Dbehaviour:
<My> and <M,> tend to vanish wﬁen the temperature increases; %
and Xj;tend to diverge and C ot Seems to have a cusp at this
temperature. T, is estimateg %rom the behaviour: <Mg> and <M_ . >
tend to vanish &@nd <Eyx> and <Ez> tend to become equal when th%
temperature increases; xﬁand Xeot? and Cy, Cp, Cy tend to diverge
at this temperature. T, is estimated from the behaviour: <Mg> and
<Eg> tend to have diffefent values from those of <My> and <Ex>,
respectively, when the temperature increases; Ctot diverges at
this temperature.

4, Conclusions and Discussion
From the estimation of singular temperatures T,, T,, T, for
%wn gn F%g

several values of R, we obtain the phase diagram sh . 4.
In this figqgure the negative larger R we take, the narrower
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partially disordered region (T,< T <
T,) is obtained. This feature'is
gUalitatively in agreement with the
results of the mean field
approximation [2] and the cluster
variation method [5]. The partially
disordered (PD) state seems to be
realized in the temperature region
T,< T <T, even when the parameter R
tdkes values of R < - 0.4. The
critical value of R at which PD
phase vanish is not detected from
the present simulation. This
feature agrees better with the
result of the cluster variation
method [5] than that of the mean

10
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Fig. 4. Estimated temperatures T,, T,,
TR v.s. inverse parameter -1/R(=-J/J')
ahd the phase diagram. Temperatures are

estimated from the present simulation @,
and the simulation data of Wada et al
[6]A. ® is the exact transition
temperature of the ferromagnetic (J' >
0) triangular lattice kT /J' = 3.641.

Dash dotted lines are thé& result of the
mean field approximation by Mekata [2].
P: paramagnetic, Pd: partially
disordered, F,: two-sublattice
ferrimagnetic, and F,: three-sublattice

ferrimagnetic phases?

field approximation [2].

The present result of the
susceptibility (Fig. 2(a) and the
specific heat (Fig. 3(a)) of the
total system, X t and C , in the case of R 0.2 is
qualitatively tgg same aEOEhat of the Monte Carlo simulation of
- 0.1 by Wada et al [6]. They, however, proposed that C
seems to have no singularity at T,. They also claimed thaEOEhe
phase will not be realized as an equilibrium phase, because
interchanges of roles of three sublattices frecuently happen in
phase region. Nevertheless we expect that the interchanges of
roles of sublattices with some time interval will not happen at
the thermodynamic limit. If the PD phase can not exist &s an
equilibrium phase, the breakdown of this phase should be brought
out from domain-like local interchanges of roles of the three
sublattices.

PD

PD

Very recently, we are noticed that this model belongs to the
universality class of six-state clock mocdel [8]. This mcdel hes a
possibility that Kosterlitz-Thouless transition occurs at Tl'
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