STUDY OF MAGNETIC SOLITON BY NUCLEAR MAGNETIC RELAXATION

T. Goto

Department of Physics, College of General Education, Kyoto University, Kyoto 606, Japan

Experimental evidences for Sine-Gordon soliton and propagative domain-boundary have been obtained from the nuclear spin-lattice relaxation studies for easy-plane ferromagnet $CsNiF_2$ and Ising-like canted anti-ferromagnet $CsCoCl_3 \cdot 2H_2O$, respectively.

Non-linear excitation (soliton) in one-dimensional magnet has recently been one of the most interesting topics in solid state physics. The present work is concerned with the nuclear spin-lattice relaxations associated with soliton dynamics in two types of one-dimensional systems; easy-plane ferromagnet CSNiF₂ and Ising-like antiferromagnet CSCOCl₂·2H₂O. The experiments were carried out using a coherent pulsed-NMR technique in the temperature range between 1.5 K and 20 K.

 $CsNiF_{2}$ (T_N=2.7 K) is known as the best system for the study of Sine-Gordon 2π -soliton. The relaxation time T_1 of 133Cs measured with an external field H (1.5 kOe~12 kOe) applied in the easy-plane exhibited remarkable field and temperature dependences, which suggested the existence of two important relaxation mechanisms. Magnon contribution was first evaluated by making exact numerical calculations for the two-magnon and the three-magnon processes within the framework of conventional linear spin-wave theory. The experimental data fit well to the prediction of the three-magnon process (the secondorder exchange-enhanced process) quantitatively as well as qualitatively for relatively high fields and low temperatures. Next, analysis was attempted on a soliton model such that the nuclear relaxation is due to collisions with one-dimensional dilute soliton gases, which led to a qualitative expression;

 $\mathbb{T}_{1}^{-1} \sim \mathbb{T}^{-1} \exp(-c\sqrt{H}/\mathbb{T}), \qquad (1)$

where H is magnetic field in the

Fig.1. Experimental values of T_1/T vs. \sqrt{H}/T for 133Cs in CsNiF₃. Solid line represents the best-fit curve based on the soliton model, which is obtained by taking c= 10.3 (kOe)^{-1/2}K in the eq.(1) in the text.

easy-plane. Taking c to be 10.3 $(kOe)^{-1/2}K$ resulted in a satisfactory fit of the eq.(1) to the experimental data which deviated from the prediction of the three-magnon process. The situation is clearly demonstrated in Fig.1, which shows the selected experimental values of T_1/T vs. \sqrt{H}/T , where H=H -H_d, H_d being the demagnetization field. The soliton model is found to be valid for the field and temperature regions like $0.3 \le \sqrt{H}/T \le 0.6$ (kOe)^{1/2}K⁻¹. Magnon-dominated regions are the ones like $0.6 \le \sqrt{H}/T$. Our value of c yields soliton activation energy smaller by about 30 % as compared with the theoretical value, which is consistent with the result for the neutron inelastic scattering experiment.[1] A preliminary account of this work has been reported previously,[2] and details have been presented at ICM '82.[3]

Spin dynamics of Ising-like antiferromagnet is characterized by propagative domain-boundary. Canted antiferromagnet $CsCoCl_3 \cdot 2H_2O$ [4] (T_N=3.3 K in zero field) is an appropriate system to study this problem. Previously, we have reported on ¹³³Cs spin-lattice relaxation in this compound.[5] Experimental features are as follows. (See Figs.2 and 3.) For the external field H applied parallel to the c-axis (nearly Ising-axis), the relaxation rate T₁ o increases remarkably but rather monotonously as the temperature decreases near to T_N. For H //a-axis (chain direction with a small weak moment), on the other hand, there appears a maximum of T₁ around a certain temperature which is not related to the three-dimensional ordering. In fact, the shift of resonance field associated with the long-range ordering was never observed below this

Fig.2. Temperature dependences of T_1^{-1} of 13°Cs and H in CsCoCl₃·2H₂O for H //c-axis. Solid lines represent the best-fit curves based on the soliton model, the eq.(2) in the text.

Т. Gото

temperature. It is also noted that the external field applied along the a-axis causes a phase transition to a paramagnetic phase with critical field of 2.9kOe at T=0 K. [4] The value of T, and the temperature corresponding to the maximum have a trend to increase with increasing temperature. On the higher temperature side, the temperature dependence of T, is almost the same as that for H_//c-axis. The relaxation mechanism was assumed to be due to the longitudinăl correlation of the antiferromagnetic $q=\pi$ mode which diminishes with a damping constant $\Gamma_{z} = \langle v \rangle / \xi$, where ξ is correlation length of Ising chain (= $(1/2)\exp(|J|/kT)$, and $\langle v \rangle$ is the mean velocity of boundaries $(=\varepsilon|J|/\hbar, \varepsilon$ being the exchange anisotropy). Then, under the condition that ω_{M} (nuclear Lamour frequency) $\ll \Gamma_{a}$, we obtained

> $T_{l}^{-l} \sim \Gamma_{q}^{-l} \sim \exp(|J|/kT)$ (2)

By taking J/k to be 12 K, the eq.(2) fit well to the data for H //c-axis, as shown by the solid line in Fig.2. As for the case H //a-axis, the tempe-

shown by the solid line in Fig.2. As for the case H //a-axis, the temperature dependence of T_1 on the higher temperature side was found to be interpreted in the same way, as shown by the solid line in Fig.3. This equation, however, does not explain the appearance of $(T_1)_{max}$ as been observed in impure antiferromagnetic chain $(CD_3)_4 NMn_{(1-c)}Cu Cl_3$ [6] and Ising-like antiferromagnet CsFeCl_2.2H_00 [7]. The experimental features have been interpreted in terms of an equation;

 $\mathbb{T}_{1}^{-1} \simeq \Gamma/(\omega_{\mathbb{N}}^{2} + \Gamma^{2}),$ (3)

where Γ is the flipping rate of the antiferromagnetic domains. Then, the appearance of $(T_{-}^{-1})_{\max}$ has been ascribed to the realization of the condition $\omega_{\rm N}=\Gamma$, although the expression for Γ is different depending on "coherent" (noninteracting soliton) model or "incoherent" (diffusive) model. The damping constant used in the eq.(2) is essentially the same as Γ for coherent model, and in fact, the (T_1) in CSCoCl $2H_2O$ seems to be interpreted by the eq. (3). To confirm this point, we have measured T_1 of H in this compound. The experimental results are shown in Figs 2 and 3. As is seen, the bahaviour of T_1 of H is quite similar to that of $\frac{1}{13}$ Cs. It should be noted, in parti-cular, that the temperature at which $(T_1^{-1})_{max}$ appears does not depend on the nuclear Lamour frequency but only on the strength of the applied field. (Compare the curves for 1.33Cs ($v_{\rm N}$ =5.58 MHz/10 kOe) at 5.6 MHz and ¹H ($v_{\rm N}$ =42.3 MHz /10 kOe) at 57 MHz.) Thus, in the case of CsCoCl₃·2H₂O, the criterion for (T⁻¹) seems to be due to the strength of the applied field along the a-axis or the electron Lamour frequency. It may be necessary to consider the transverse correlation. Then, the presence of a weak moment along the a-axis and the resulting change in correlation length caused by the external field along the a-axis may play some role. The answer has not yet been found out.

In conclusion, it has been shown that the nuclear spin-lattice relaxations in $CsNiF_3$ and $CsCoCl_3 \cdot 2H_2O$ provided experimnetal evidences for the solitons in respective cases.

- J.K.Kjems and M.Steiner: Phys. Rev. Lett. <u>41</u> (1978) 1137 [1]
- [2] T.Goto and Y.Yamaguchi: J. Phy. Soc. Jpn. 50 (1981) 2133
- T.Goto and Y.Yamaguchi: Proc. Int. Conf. on Magnetism, Kyoto, 1982, [3] to be published
- [4] A.Herweijer, W.J.M. de.Jonge, A.C.Botterman, A.L.M.Bongaarts and J.A.Cowen: Phys. Rev. B5 (1972) 4618
- [5] T.Goto and T.Kawai: J. Phy. Soc. Jpn. 50 (1981) 3531
- [6] J.P.Boucher, H.Benner, F.Devreux, L.P.Regnault, J.Rossat-Mignod, C.Dupas, J.P.Renard, J.Bouillot and W.G.Stirling: Phy. Rev. Lett. 48 (1982) 431
- [7] A.M.C.Tinus, C.J.M.Denissen, H.Nishihara and W.J.M. de.Jonge: J. Phys. C15 (1982) L791

Corridor in the main building.

Robby in the main building.