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SINGULARITIES AND PHASES IN THE STAR POTENTIAL*

J. L. Martinez**, K. Okada, and I. Suzuki

Nagoya Institute of Technology, Syowa-ku, Nagoya 466, Japan

Densities and responses of one of the catastrophe potentials, the
star potential, were calculated as the second part of Classical
Calculations on the Phase Transition. For values of coefficients
in certain ranges, there appears an intermediate ordered phase.
Variations of the singular behavior of densities and responses at
transition points were calculated.

1. INTRODUCTION

In the catastrophe theory, the structure
of singularities (critical spaces CRS and
coexistence spaces CXS) in the phase diagram
of any structurally stable potential, with one
essential behavior variable and a number of
control variables, is equivalent to that of a
cuspoid potential. This potential has the
same form as that of the Landau expansion.
However, between the standard forms of
catastrophe potentials and Landau expansions
() there is an essential difference, i.e. higher

PR order terms in the former are transformed away
and those in the Tlatter are neglected away.[1]
The standard form of the catastrophe potential
gives all of the topological aspects of any
phase transition with one order parameter.
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We consider one of the cuspoids, the star
potential,

Fig. 1 A section of the four V(x,ui)= z %}uixl+ %xa (1)
dimensional phase diagram of =1

the symmetric star potential This potential contains all singularities of
at ue<0. lower order cuspoids (fold, cusp, swallowtail,

butterfly, and wigwam catastrophes) and exper-
imentally detectable singularities. Physical

=4 2 field variables Tike electric field, magnetic
—_—— | field, temperature, and pressure are mapped to
n, |4+=311 controls {ui}’ and the order parameter to the
U4 =6.66 behavior = with {u.} as parameters, by
' diffeomorphisms. Eliminating x from eq.(1)
and the stability condition
'R&S V/dx = 0 (2)
o]
4 ) ! | 4, We obtain the potential of the stationary
3RXSo state U(“i) as a function of the controls.
Fig. 2 Density mi (polariza- Here we define the density vector and the

tion) for u1=0, ue=-4 at various

values of uy. (refer to Fig. 3) response tensor by the negative gradient and

the negative Hessian respectively, and we
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obtain easily from eqs. (1) and (2),

. U 1 7z
density vector: n;= - 50— = - , (3)
T
) %y i4g-2
response tensor: Xii™ "5 = ® /W (4)
7

where

W = u2+2u3x+3uux2+4u5x3+5uex“+7x6 . (5)

If we put w3=us=0, the phase diagram is symmetric with respect to the
uy-axis. Detailed considerations of the phase diagram, complex singularities
called critical coexistence spaces, and anomalous hysteresis loops of the
symmetric star potential,

V= ux + %uzx2+ %uuxl'+ %u5x6+ %xe (6)
were given in the previous paper (part I).[2] The phase diagram of the star
potential has been briefly discussed also in ref.[3].

In this paper (part II) we give the results of densities and responses of
the symmetric star potential, eq.(6). In the Landau expansion, u; stands for
negative field and u., for temperature difference from a fixed temperarure. In
the case of a ferroelectric, for example, n; is polarization, n, entropy, Xii
susceptibility, xi2 pyroelectric coefficient, and .. specific heat.

2. DENSITY

Topological aspects of the phase diagram of the potential eq.(6) for wue20
are the same as those of
the symmetric butterfly
(up to the sixth power),
except that the origin
gy= =5 of the control space is
a critical point of
order four *CRS, when

5 us=0. The case of ug<0
is our main subject, and
Xi the phase diagram has
ﬂ been discussed 1in
4 part I. It is repro-

duced in Fig. 1. We
have three coexistence
surfaces 2CXS,, a verti-
cal plane and two wing
surfaces. The dashed

F

11 h triple 11
: ine shows a triple line
- 3CXS; at u2>0 and a
2 7 quadruple line “*CXS; at
|

u2<0. The two fringe
lines of wing surfaces
are critical lines
2CRS+, which intersect
at 2RXSo. At the criti-

4:i>__339!R&S°
N

355 cal coexistence point
\\\ \\\ 2| (bicritical end point
s PR [4]) 2RXS,, two critical
' phases (I)/(II) and

Fig. 3 Response X11 (susceptibility) corresponding (I11)/(1IV) coexist. The
to Fig.2. uy-axis is another
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critical Tine 2CRS, ending at ®RXSy. At the critical coexistence point
(critical end point [4]) °RXSo, the critical phase (II)/(III) coexists with two
regular phases (I) and (IV).

Figure 2 shows variations of the density ni=-z in the case of ug=-4, along
Tines parallel to the u,-axis indicated by small arrows in Fig. 1. This may
correspond to the zero field polarization. For large values of u, we have one
singularity at u,=0. (on the w,-axis 2CRS;). For u,=5.33 there appeares the
second singularity at *RXSo. In this case, we have two critical points in n;
vs. u, (polarization vs. temperature) at u,=0 and 2RXS,, of which critical
exponents are B=1/2 and

5 1/3 respectively.
Taking smaller values of
Uez-4 X2, uy, the second singu-
larity changes to a
4 first-order transition

at the crossing point

with *CXS;. At u4,=3.55

we have only a disconti-

AN 3 nuity, a first-order

N transition, at 3RXS,.

The criticality at *RXS,
does not show itself in

2 the ni1 vs. u, curve.

2.88 When #4<3.55, it gives

the ordinary behavior of

4.4 the first-order tran-

3 sition.

|
3RO\ 3. RESPONSE
N

NSNS Nl
_4 N

We calculated

2 O wu. 2 responses xii» X2z and
Fig. 4 Response X22 (specific heat) corresponding x12. First, Fig. 3
to Fig.2.

shows xi1, which is sus-
ceptibility in the
Landau analogue, in the
same subspaces to those
5 of Fig. 2. Along the
ue=-4 Tine u4=5.33 through
ZRXSo, it gives two
divergences at two
critical points. It
Tooks similar to the
relation of dielectric
constant vs. temperature
3 in rochelle salt with
two Curie points, but it
is not the case. One
divergence changes
4}>L;2;33§33 ’:/ 2 itself to a discontinu-
REXSs ous jump at *CXS,, for
488 | smaller values of uy.
444 After its collapsing at
\\\ ] | the second divergent
399 peak at u,=0, we have

NN N\ 23Rk only one singularity, a

\\\ \\\ o discontinuous jump.

-4 2 0 4, 2 Secondly, x22 1is
seen in Fig. 4. There
is a peak at Tower u,

_XIZ

Fig. 5 Response x12 (pyroelectric coefficient) cor-
responding to Fig.2.
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and a discontinuity at u«,=0. The latter is the usual discontinuous specific
heat in the Landau approximation. The complex singular point 2RXSo is the
intersection point of two 2CRS;. However, there appears an infinite peak in
specific heat at ?RXS,, in contrast to 2CRS; at u2=0. This comes from the fact
that the direction of differentiation (u,-axis) makes an angle with the hidden
coexistence line. (the strong direction [5]) This is clearly shown in Fig. 7A
in part I. Singular behavior of responses depends upon the direction of
differentiation relative to the direction of the coexistence line.[5]

It also changes by the direction of the approaching path to the critical point.
These dependencies in the cuspoid potential will be investigated in part III.
For the value of 5.33>u,>3.55, the lower singularity assumes a cusp-type peak.
Although it is a first-order transition point, the discontinuity disappears
owing to the symmetry of the curve. It has a latent heat because of a discon-
tinuity in entropy.

The response -x1» shows similar behavior to that of xi: except for u,>0 as
illustrated in Fig. 5.

4. DISCUSSION

One of the standard forms of the catastrophe potential eq.(6) has four
stable phases at most. These are shown as (I), (II), (III), and (IV) in Fig. 1.
The phase (II') is a degenerate phase resulting from being indistinguishable of
phases (II) and (III), which is the paraelectric or the non-polar phase in
ferroelectric analogue. Along a typical scanning path parallel to us with u,=0
and ug<0, we calculated the critical behavior of densities and responses.

There appears an intermediate phase between successive phase transitions.
Owing to the intermediate phases (II) and (III), we can expect new transition
schemes. For example, when the system is scanned by ui’, a triple hysteresis
Toop results. (part I) This theory, however, predicts nothing about the
structure of the intermediate ordered phase.

We have shown only n. and x.. with <,5=1,2. It is easy to get other
quantities and their classfcal eiﬁﬁnents from egs.(3), (4), and (5).

Let the diffeomorphic mappings be

fn"* Ups Uy = Mi(fn)’

y mx:x = x(y,fﬁ).

The physical densities dn and physical responses Knm can be calculated by

3ui

d,= Z ”i(f)T
1 n

5 Bzui 5 du, auj

K =) [N.Asr=rm + ) X0 (O)am 771
mm 2 L 3F, °F,, 5 Mg °f, 37,

When above diffeomorphisms are linear, physical densities and responses are
Tinear combinations of n. and .. respectively, with the Landau expression as
the simplest case. The Hominant? terms of them give critical exponents of those
quantities.

* This paper stands for Part II of the preceding paper, ref. [2]. ** Dpto. de
Optica, Universidad Autonoma de Madrid, Madrid, Spain.
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