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SINGULARITIES AND PHASES IN THE STAR POTENTIAL*

J. L. Martinez**, K.Okada, and I. Suzuki

Nagoya Institute of Technology, Syoua-ku, Nagoya 466, Japan

Densities and responses of one of the catastrophe potentials, the
st.ar potentlal, were cal-culated as the second part of Classical
calculati-ons on the Phase Transi-tion. For values of coefficients
in certaj-n ranges, there appears an intermediate ordered phase.
Variations of the singular behavior of densities and responses at
transition poi.nts were calculated.

Fig. 1 A section of the four
dlmensional phase diagram of
the s)rmmetric star potential
at ua<O.
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FIg. 2 Density nr (polariza-
tion) for ut=O, ua=-4 at varj.ous
values of u+. (refer to Fig. 3)

I. INTRODUCTION

In the catastrophe theory, the structure
of singularit'ies (crit'ica1 spaces CRS and
coexistence spaces CXS) in the phase diagram
of any structurally stable potential, wi[h one
essential behavior variable and a number of
control variables, is equivalent to that of a
cuspoid potential. This potential has the
same form as that of the Landau expansion.
However, between the standard forms of
catastrophe potentials and Landau expansions
there is an essential difference, i.e. higher
order terms in the former are transformed-away
and those in the latter are neglected away.[1]
The standard form of the catastrophe potentiaT
gr'ves all of the topo'logical aspects of any
phase transition with one order parameter.

We consider one of the cuspoids, the star
potential ,

6-
v(t,u1)= .f 1",.*'* 

Ly'
" i=1" "

This potential contains a1'l singularities of
lower order cuspoids (fold, cusp, swal Iowtail ,butterfly, and wigwam catastrophes) and exper-
imentally detectable singularities. physila'l
field variables like electric field, magnetic
field, temperature, and pressure are ma[ped to
control s {u;}, and the order parameter to the
behavior c ffith {u..} as parameters, by
diffeomorphisms. Eliminating r from bq.(l)
and the stability condition

dv/Dx = 0 (2)
we obtain the potential of the stationary
state u(ur) as a function of the controli.

Here we define the density vector and the
response tensor by the negative gradient and
the negative Hessian respectively, and we
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obtain easily from eqs. (l) and (2),

density vector: ni= ' # = -**' ,
,7,

a2tt ; L; -response tensor: x,t,;= -#. = *L+J-z1w ,
"'tJ

where

'S^J = 112*2u s&+3u+a2+4u sr3 +5t1 5ua +7 rG .

If we put Lt.g=tLs=O, the phase diagram is symmetric with respect to the
ar-dXiS. Detailed cons'iderations of the phase diagram, complex singularities
called crjtical coexistence spaces, and anomalous hysteresis loops of the
symmetric star potential n

v = urr + L2ur*'+ l-ouu*'+ 
lur*u* 

L-g' (6)

were given in the previous paper (part I).[2] The phase diagram of the star
potential has been briefly discussed also in ref.[3].

In this paper (part II) we give the results of densities and responses of
the symmetric star potent'ia1, eq.(6). In the Landau expansion, zr stands for
negative field and uz for temperature difference from a fixed temperarure. In
the case of a ferroelectric, for example, nr is polarization, n2 entropy, Xrr
suscept'ibil it.y, Xrz pyroelectric coefficient, and Xzz specific heat.

2. DENSITY

Topologica'l aspects of the phase diagram of the potential eq.(6) for rz5>0
are the same as those of
the symmetric butterfly
(up to the sixth power),
except that the origin
of the control space 'i s
a cri ti ca1 po'int of
order four +CRSg when
ua=O. The case of 25,<0
is our main subject, and
the phase diagram has
been discussed in
part I. It is repro-
duced in F'ig. 1. We

have three coexistence
surfaces 2cxsz, a vert'i -
cal plane and two wing
surfaces. The dashed
line shows a triple line
3CXS, at ziz>0 and a
quadruple line 4CXS1 at
uz<O. The two fringe
lines of wing surfaces
are cri ti cal I i nes
2 

CRS r , wh i ch 'i ntersect
at 2RXS0. At the criti-
cal coexistence point
(bicritical end point
[4] ) 'zRXSo , two cri ti ca1
phases (I)/(II) and
(III)/(IV) coexist. The
,rq-aX'i s is another

(3)

(4)

(5)

-4-2Ourz
Fig. 3 Response Xrr (susceptibility) corresponding
to Fig.2.
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critical line 2cRSr gnq!ng at 3Rxso. At the critical coexistence point(critical end po'int [4]) 3RXSo, the critical phase (II)/(III) coexists with two
regular phases (I) and (IV).

Figure-2 shows variations of the density nt=-r'in the case of r/6,=-4, along
lines para'llel to the zr2-axis indicated by smali arrows in Fig. f. ihis'muy
correspond to the zero field polarization. For large values of u4 we have one
singu'larity at u2=0. (91 tne ua-dxis 2CnSr). For ua=S.33 there appeares the
second singularity at 2RXSo. In th'is case, we have two critical irbints in 11vs. u2 (polarization vs. temperature) at u2=O and 2RXSo, of which'critical

Fig. 4 Response X22
to Flg.2.

-4 -2

(specific heat)
ouz2

corresponding

exponents are B=l /2 and
1/3 respectively.
Taki ng smal I er val ues of
ut* the second singu-
larity changes to a
f i rst-order trans i t'ion
at the crossing point
wi th '* CXS I . At rzq =3. 55
we have only a disconti-
nuity, a first-order
transition, at 3RXSo.

The criticality at 3RXSo

does not show itself in
the nr yS. u2 Curve.
When ai+<3. 55, 'i t gi ves
the ordinary behav'ior of
the first-order tran-
sition.

3. RESPONSE

llle calculated
respOnSeS Xrrr Xzz dnd
Xrz. First, Fig.3
shows 111, wh'i ch is sus-
ceptibility in the
Landau analogue, in the
same subspaces to those
of Fig. 2. Along the
line zzu=5.33 through
'RXSo, it g'i ves two
divergences at two
critical points. It
looks similar to the
relation of dielectric
constant vs. temperature
in rochelle salt with
two Curie points, but it
is not the case. One
divergence changes
i tsel f to a di scont'inu-
ous jump at qCXS1, for
smal I er val ues of u,r.
After i ts col 1 apsi ng at
the second divergent
peak at u2=0, we have
only one singularity, a
discontinuous jump.

Secondly, Xzz is
seen in Fig.4. There
is a peak at lower zrz

Fig. 5 Response Xt2
responding to Fig.2.

-4-2guzz
(pyroelectric coefficlent) cor-
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and a di scont'inui ty at ;22=0. The I atter i s the usual di scont'ilyous spec'if i c
heat in the Landau-approiimation. The complex singular point 2RXSo js the
intersection point of two 2CRSr. However, there appears an infin'ite peak in
specific heat at 2RXS., in conirast to_2CRS1 at u2=0. This comes from the fact
tirat the direction of d'ifferentiation (uz-axts) makes an angle w'ith the h'idden

coexistence line. (tfre strong direction [5]) This is clearly shown in Fig. 7A

in part I. Singular behavior of responses depends upon the direction of
difierentiation-relative to the direction of the coexistence line.[5]
It also changes by the direction of the approaching path to the critical point.
These dependlncies in the cuspo'id potential will be investigated in part III.
For the value of 5.33>zr+>3.55, the lower s'ingularity assumes a cusp-type peak.
Although it is a first-order transit'ion po'int, the discontinuity d'isappears
owing [o the symmetry of the curve. It has a latent heat because of a discon-
tinu'ity in entropy.

The response -Xr2 shows similar behavior to that of Xrr except for zrz>0 as

illustrated in Fig.5.

4. DISCUSSION

One of the standard forms of the catastrophe potential eq.(6) has four
stable phases at most. These are shown as (I), (II), (IIi), and (IV) in FlS. !.
The phase (II') is a degenerate phase resulting from being indist'inguishable of
phasbs (II) and (III), which is the paraelectric or the non-po1ar phase.in
ierroeldctijc analogue. Along a typical scanning path paral'le1 to uz with zz1=0

and ue<0, we calculated the critical behav'ior of densities and responses.
There appears an intermediate phase between successive phase transit'ions.
gwing tb the 'intermediate phases (II) and (III),.we can expect new transition
schetes. For examp'le, when the system is scanned by rr', a triple hysterest's
loop results. (part I) This theory, however, predicts nothing about the
structure of the 'intermediate ordered phase.

l^le have shown only r1-. and x;.-. w'ith
quant'ities and their classfcal expdnents

Let the diffeomorphic mapp'ings be

fn* uo, uo = ui(fn),

A + rt & = n(A,fn).

The physical densities dn and physical responses Krun can be calculated by

Du,
dr= \'t<fl#L 'n

D2u. Eu,r,*=ltni<flffi*l*urorq
When above diffeornorphisms are linear, physical densities and responses are
linear combinations of n-. and 1-.-. respectively, with the Landau expression as

the s'implest case. The SominahtJterms of them g'ive critical exponents of those
quant"iti es .

* This paper stands for Part II of the preced'ing paper, ref. [2]. ** Dpto. de

0ptica, Unjversidad Autonoma de Madrid,.Madrid, Spain.-
til M.C. M. Vendrik: physica 99A (.l979) .l03,5.|3. [2] K.0kada and I. Suzuk'i:
J.-pfrys. Soc. Jpn. 5l (.l982) No.l0. t3l S. Krinsky and D. Mukamel: Phys. Rev.

B ll (.l975) 399. t4-J J. M. K'incaid and E. G. D. Cohen: Phys'ics Report ??-
(19-75) sB.' R. s. Grirriths: Phys..Rev. ts 12 (1975) 345. lsl B. 9. 9tiffiths
ind J. C. Wheeler: Phys. Rev. A 2 (1970) 1047. H. E. Stanley, T-. S. Chang'
F. Harbus and L. L. L'iu: Proc. Int. School Phys. E. Fermi, Local Properties at
Phase Transitions, North-Holland Pub. Co.(.l976), p. 45.

i,j=1,2. It is easy to get other
from eqs.(3) , (4) , and (5) .
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