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The dynamical diffusion coefficient of two-dimensional
electron-impurity system under quantizing magnetic fields
is determined through a diagramatic self-consistent cal-
culation of the density correlation function. Extended
states do exist but only at one energy for each Landau
subband, at which the real part of the retarded single-
particle Green function vanishes.

1. Introduction

The Anderson localization may be regarded as a phase transition where the
Fermi energy playsthe role of the temperature. If we consider an analogy with
spin systems, the insulating state corresponds to the paramagnetic phase, the
localization length to the correlation length, and the metallic state to some
ordered phase. There are several suggestions about the equivalence between the
Anderson localization problem and a certain class of spin systems [1,2]. 1In
this paper we discuss a very interesting behaviour of the dynamical diffusion
coefficient of two-dimensional electron system moving in random static poten-
tials under strong magnetic fields. If we can construct any spin system equi-
valent to the present electron system, a very peculiar new type of phase tran-
sition will be expected in the spin system. We do not go into the equivalence
problem any more in the present paper.

Recent theoretical investigations on the Anderson localization in two-di-
mensional systems [3-7] derived a conclusion that particles scattered by random
potentials are always localized irrespective of the strength of the potential
fluctuation as far as the system has the time reversal sysmmetry. The magnetic
field violates the time reversal symmetry and has been shown to weaken the lo-
calization [8,9]. We have also shown that the weak magnetic fields will not gi-
ve rise to extended states in the two-dimensional system [10]. Thus there oc-
curs a naive question whether strong magnetic fields break the two-dimensional
localization or not. This problem is particularly important recently, since the
quantized Hall effect in MOSFET has been pointed out to be used in accurate de-
termination of the fine structure constant [11,12]. 1In order to have quantized
Hall conductivity, there must exist at least one extended state [13].

2. Self-Consistent Determination of Diffusion Coefficient

In order to derive a self-consistent equation for the dynamical diffusion
coefficient, we consider the g- and w-dependent density respense function ¥ (q,w),
which can be written generally in the following form [6],

Xx(@,w) = ¢(q,w,E) + N(E) + 0(w,q?) |, (2.1)

where ¢ is the density relaxation function, N(E) the density of states at the
Fermi energy E. We restrict ourselves to the absolute zero of temperature and
discuss the Fermi energy dependence of physical quantities. Because of the par-
ticle number conservation ¢ must have the following form in the small q limit,
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¢(q,w,E) = -N(E)/[w + iD(w,E)q®] , (2.2)

where D has the meaning of the diffusion coefficient. Once we know the density
response function y(q,w), it is straightforward to obtain the dynamical conduc-
tivity Oxx(w,E);

Oxx(w,E) = ezlimq O(—iw/qz)x(q,w) = e?N(E)D(w,E) . (2.3)

>

The last equality in nothing but the Einstein relation.

In the following we take a model where free electrons are moving in a two-
dimensional space with randomly distributed short-range potentials (strength u,
concentration ni) under a strong magnetic field perpendicular to the system.

To simplify the problem we consider the case where the Landau subband width T
is much smaller than the cyclotron frequency w. and where the Fermi energy lies
within the lowest Landau subband. The details of the derivation of the self-
consistent equation will be published else where [14,15]. Here we explain the
essence of the procedure. In the present situation, the density relaxation
function is expressed in terms of the impurity average of the product of the re-
tarded and advanced simgle-particle Green functions which are generally non-di-
agonal in the Landau state representation. Through the standard diagramatic me-
thod, this average of the product of Green functions can be decomposed into a
sum of products of averaged single-particle Green functions which are now dia-
gonal in the Landau representation and, within the present model, independend

of the center coordinate of the cyclotron motion. Thereby the concept of the
irreducible vertex correction is naturally introduced and the diffusion coeffi-
cient can be expressed in terms of the irreducible vertex corrextion. The ex-
act treatment of the irreducible vertex correction is usually impossible. 1In
order to derive a closed self-consistent equation for D(w,E), we calculate the
irreducible vertex correction in an approximation which takes account of the
electron motion in an effective diffusive medium characterized by the density
relaxation function of the form of eq. (2.2). 1In this way a self-consistent
equation for the dynamical diffusion coefficient is obtained. The equation it-
self is too lengthy to be written down here and is omitted [14]. 1In the follow-
ing section we discuss about the solution of the equation.

3. Dynamical Diffusion Coefficient and Localization Length

The most prominent property of the self-consistent equation discussed above
is that the logarithmically singular term due to the dlffu31on pole of ¢ does
not vanish as far as S(E) = GR(E) + cA (E) # 0; here GR and G® are the retarded
and advanced Green functions of the lowest Landau subband. Because of this sin-
gurality, the losution D(w,E) of the self-consistent equation with S(E) # 0 has
to be zero at w = 0. In the small w region, the solution has the following form,

D(w,E) = Do (E){-i0A; (E) + Q%A,(E) + 0%} , (3.1)

where Dy (E) = 2ﬂ22niu2N(E), Q = wl?/Do(E) with 22 = ch/eH (% the magnetic length
), and A; and A, are positive functions and their values are calculated numeri-
cally in general. Especially when E approaches Ep at which S = 0, A; behaves

as

Ay (E) = z-lexp[y + 1 + P(E)/(S(E))?] , (3.2)

w1th P(E) = GR(E)G (E) and Yy Euler's constant, and A; is roughly proportional to
A1?. The quantity P(E)/(S(E))? may be approximated by ol'?/(E-Ep)? with o a con-
stant of order unity.

At E = Ep, the self-consistent equation has a finite solution even for w =
0, and the behaviour of D(w,E;) in the small w region is found to be

D(w,Eo) = Do (Eo){a - Ry|Q] - iI,Q[1n|Q] + b] + 0o ()} , (3.2)

where ) should be evaluated at E = Ey, and a, b, Ry, and I, are positive con-
stants of order unity. In figs. 1 and 2, the numerical solutions of the self-
consistent equation are depicted as the function of the frequency with the Fermi
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Fig. 1: The real part of the dy- Fig. 2: The imaginary part of
namical diffusion coeffi- the dynamical diffusion
cient. coefficient.

energy as a parameter (E is measured from Eg). In the calculation we have used
the single-particle Green functions obtained by the self-consistent Born appro-
ximation for simplicity. Even if better approximations were used for the single-
particle Green functions, there would be no qualitative change in the frequency
and energy dependences of D(w,E). From Figs. 1 and 2 we find that, reflecting
the singular w dependence at E = 0, both of Re D and Im D show very rapid change
in the small w region, especially when E tends to zero.

The result described above indicates that the extended states exist only at
E = Eo where the real part of the retarded Green function chages the sign, and
that all other states with E # E; are localized. From a very general discussion
A, is found to be equal to the square of the localization length & if D(w,E) has
the form of eq. (3.1). Thus we find that the energy dependence of & is very
singular when E goes to Eq. In Fig. 3, the result of the numerical calculation
for £ is depicted. Note that E‘l is very snall at small values of E (E is again
measured from Eg¢) but that it never becomes zero as far as E # 0.

5. Concluding Remark

By a self-consistent treatment of the dynamical diffusion coefficient, we
have shown that all the states in the lowest Landau subband except for those
with energy Eq at which the real part of the retarded Green function vanishes
are localized in the sense that the static diffusion coefficent is zero. When
E approaches Ep, the localization length behaves as fexp[cl'?/(E-E¢)?]. This
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singular energy dependence of the locali-
zation length is reflected in the very
rapid change of D(w,E) in the small w re-
gion when E ~ Eq. The present calcula-
tion can be extended to the case where
the Fermi energy lies in a higher Landau
subband, and we have obtained similar
conclusion that only the states at the
subband center are extended. Thus, as
changing the Fermi energy, we can expect
a very peculiar behaviour of the locali-
zation length, i.e., it diverges whenever
the Fermi energy passes through the cen-
ter of a subband. The extended states

do exist but the measure of those states
in the energy space is vanishingly small.
The present result is consistent with the
observation of the quantized Hall effect
in two-dimensional electron system under
strong magnetic fields.
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