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The dynamlcal diffusion coefficient of two-dimensional
electron-impurlty system under quantlzlng magnetic fields
ls determlned through a diagramatlc self-conslstent cal-
culatlon of the density correlatlon r-unctlon. Extended
states do exlst but only at one energy for each Landau
subband, at which the real part of the retarded single-
particle Green function vanishes,

1. Introduction
The Anderson localizatlon may be regarded as a phase transition where the

Fermi energy playsthe role of the temperature. If we conslder an analogy wlth
spln systems, the i-nsul-atlng state corresponds to the paramagnetic phase, the
locallzation length to the correlation length, and the metallic state to some
ordered phase. There are several suggestlons about the equivalence betlreen the
Anderson localization problem and a certain class of spin systems 17,21. In
this paper we discuss a very interesting behaviour of the dynamical dlffusion
coefflclent of two-dimenslonal electron system movlng 1n random static poten-
tj-als under strong magnetlc fields. If we can construct any spln system equi-
valent to the present electron system, a very pecuJ-iar new type of phase tran-
sltion will be expected ln the spin system. We do not go into the equivalence
problem any more in the present paper.

Recent theoretical lnvestigations on the Anderson localj.zation in two-dl-
mensional systems [3-7] derived a conclusion that particles scattered by random
potentlals are always locallzed irrespectlve of the strength of the potentlal
fluctuation as far as the system has the tlme reversal sysmmetry. The magnetlc
fleld violates the time reversal symmetry and has been shor"m to weaken the 1o-
callzatlon [8r9]. We have also shovm that the weak magnetlc fields w111 not gi-
ve rlse to extended states in the two-dimenslonal system [10]. Thus there oc-
curs a nalve question whether strong magnetic fields break the two-dlmenslonal
locallzation or not. Thls problem is particularJ-y important recently, since the
quantlzed Hal1 effect in MOSFET has been pointed out to be used in accurate de-
terminatlon of the flne structure constant [11,12]. In order to have quantlzed
Ha1l conductivity, there must exlst at least one extended state [13].

2. Se1f-Consistent DetermLnation of Diffuslon Coefflci-ent
In order to derive a self-consistent equation for the dynamlcal dlffuslon

coefflcient, we conslder the g- and cu-dependent denslty respense function X(g,o),
whlch can be r^rritten generally in the following form [6],

X(q,o) = o(q,o,E) + N(E) + o(0,q2) , (2.L)

where Q is the denslty relaxatlon function, N(E) the density of states at the
Fermi energy E. We restrlct ourselves to the absolute zero of temperature and
discuss the Fermi. energy dependence of physical quantlties. Because of the par-
ticle number conservatlon Q must have the following form in the sma11 q 1imit,
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where D has the meaning of the diffusion coefflclent. Once we know the denslty
response functj.on X(q,rrr), lt is straightforward to obtain the dynarnlcal conduc-
tivlty o (trl,E) ;-xx

o**(o,E) : e211*o*6(-ru-r/q2)x(q,rrr) = e2N(E)D(o,E)

The last equality ln nothlng but the Einstein relation.
In the following we take a model where free electrons are movlng 1n a two-

climensional space with randomly distributed short-range Potentlals (strength u,
concentration n1) under a strong magnetic field perpendicular to the system.
To simplify the problem, we consider the case where the Landau subband wldth f
is much smaller than the cyclotron frequency to" and where the I'ermi energy lies
wlthin the lowest Landau subband. The detalls of the derlvation of the sel-f-
consistent equation will be published else where [14r15]. Here we explaln the
essence of the procedure. In the present situation, the density relaxation
function is expressed ln terms of the impurlty average of the product of the re-
tarded and advanced simgle-particle Green functions whlch are generally non-dl-
agonal in the Landau state representation. Through the standard dlagramatlc me-
thod, this average of the product of Green functlons can be decomposed lnto a
sum of products of averaged single-partlcle Green functions which are now dia-
gonal in the Landau representation and, vrithin the present model, independend
of the center coordinate of the cyclotron motion. Thereby the concePt of the
irreducible vertex correction ls naturally lntroduced and the diffusion coeffi-
clent can be expressed ln terms of the irreducible vertex corrextion. The ex-
act treatment of the irreducible vertex correctlon 1s usually impossible. In
order to derive a closed self-consistent equatlon for D(o,E), we ca1cu1-ate the
lrreducible vertex correctlon ln an approximatlon which takes account of the
electron motion in an effectlve diffusive medlum characterlzed by the denslty
relaxation function of the form of eq. (2.2). In this way a self-consistent
equation for the dynamlcal diffusion coefficient ls obtained. The equatlon it-
self is too lengthy to be vrritten down here and is omitted [14]. In the fol-1ow-
i.ng section we discuss about the solution of the equation.

3. Dynami-ca1 Diffusion Coefficient and Localizatlon Length

The most promlnent property of the sel-f-consistent equation discussed above
is that the logarithmlcally singular term due to the dlffusign pole of $ does
not vani.sh as far as S(E) = Cn<U> + GA(E) I 0; here GR and GA are the retarded
and advanced Green functions of the lowest Landau subband. Because of thls sin-
gurallty, the losutlon D(rrr,E) of the self-consistent equation wlth S(E) I 0 has
to be zero at c0 = 0. In the smal1 co region, the solution has the followlng form,

D(o,E) : Do (E) {-ioar (E) + Q2A2 (E) + o(03) } , (3. 1)

where Do(E) = 2n[2n1u2N(E), Q = al.z/oo(E) with Lz - chle[ (.t the magnetic length
), and Ar and A2 are positive functions and thelr values are calculated nuueri-

iltr, 
t" general. Especially when E approaches Eo at whlch S = 0, A1 behaves

Ar(E)=2-rexply+1+P(E)/(s(E))'?1 , (3.2)

with p(E) 
= GR(E)CA(S) and y Euler,s constant, and Az is roughly proportlonal to

Ar2. The quantlty P(E)/(s(E))'rr.y be approxlmated by crf'l(r-uo;z wj-th o. a con-
stant of order unity.

At E = Es, the self-consistent equation has a finite solution even for o =
0, and the behavlour of D(trlrEo) in the smal-1 trl region is found to be

D(o,Eo) =Do(Eo){a-nllol - trotrnlsll +bl +o(0)}, (3.2)

Y. ONo

0(q,ur,E) = -N(E)/[o + iD(o,E)q2] , (2.2)

(2.3)

= E9, and a, b, R1, and 11 are positlve con-
1 and 2, the numerical- solutions of the self-
as the functlon of the frequency Lrlth the Fermi
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where f) should be evaluated at E

stants of order unlty. In figs.
conslstent equation are depicted
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Flg. 1: The real part of the dy-
namlcal diffusion coeffi-
cient.

FIg. 2: The imaginary part of
the dynamlcal dlffusion
coefficient.
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energy as a parameter (E is measured from Eq). In the calculatlon we have used
the singJ-e-particle Green functions obtained by the self-consisteilt Born appro-
ximatlon for simplicity. Even if better approximations were used for the single-
Partlcle Green functlons, there would be no qualltative change in the frequency
and energy dependences of D(orE). From Flgs. L arrd 2 we find that, reflecting
the singular o dependence at E = 0, both of Re D and Im D show very rapid change
ln the sma1l u,t region, especially when E tends to zero.

The result descrlbed above indlcates that the extended states exist only at
E = Eo where the real part of the retarded Green functlon chages the sign, and
that all other states wlth E I Eo are locallzed. From a very general dlscussion
41 is found to be equal to the square of the 1oca1lzatlon length E if D(ur,E) has
the form of eq. (3.1). Thus we find that the energy dependence of { is very
singular when E goes to E0. In Fig. 3, the result of the numerical calculation
for { ls depicted. Note that 6-'i" very snal1 at sma11 values of E (E is again
measured frorn Eo) but that it never becomes zero as far as E I O.

5. Concludlng Remark

By a self-conslstent treatment of the dynamical diffusion coefflcient, we
have shown that all the states i.n the lowest Landau subband except for those
wi-th energy Ee at whlch the real part of the retarded Green functlon vanishes
are 1oca1lzed in the sense that the statlc diffuslon coefficent is zero. When
E approaches Eq, the localizatj.on length behaves as gexpIcf2/(f-So)2]. This

Im D(trr,E)/q(E)
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Flg. 3: The energy dependence
of the lnverse loca1i-
zation length. The bro-
ken line ls the extraPo-
lation of the anal-ytic ex-
presslon approprlate for
I r | /f<<r (see eq. (3.2) ) .
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slngular energy dependence of the 1oca1l-
zatlon length is reflected in the very
rapid change of D(o,E) in the smal1 0J re-
gion when E - Eo. The present ealcul-a-
tlon can be extended to the case where
the Ferml energy lies ln a higher Landau
subband, and we have obtalned slmilar
concl-usion that only the states at the
subband center are extended. Thus, as
changing the Ierml energy, rte can exPect
a very peculiar behavlour of the 1ocali-
zatlon length, i.e., lt diverges whenever
the Fermj- energy passes through the cen-
ter of a subband. The extended states
do exist but the measure of those states
1n the energy space is vanlshingly sma11.
The present result 1s conslstent wlth the
observatlon of the quantized Hall- effect
in two-dimensional electron system under
strong magnetic fields.
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