
J. Phys. Soc. Jpn. 52 (1983) Suppl. p. 251 254

T\do Phase Transitions in Ashkin-Teller Model
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Critical temperature of Ashkin-Tel-1er model is calculated
in the molecular field approximation. Generally it has
two critical temperatures when all the positive coupling
constants are different. when one of the coupling
constants becomes negative, the lower cri-ticaI temperature
decreases and disappears by competition between the
positive and the negative couplings of two layers.

1. fntroduction
originally the Ashkin-Teller model (AT model) which is a model of mixture

was introduced as an extension of the Ising model tll. Equivalence to two-
layered Ising model with four-spin interaction was proved by Fan [2J. Further-
more AT model was shown to be important after the proof of equivalence to a
staggered eight vertex model [3]. Wu and Lin conjectured the existence of two
phase transitions in AT model by use of the above equivalence and several
limiting cases whose exact solutions are known when all the couplinq constants
are different [4] .

This paper is also concerned with two phase transitions. The two
critical temperatures are calculated explicitly within the molecular field
approximation. Especially when one of the coupling constants becomes negative,
one of critical temperatures decreases and becomes zero by competition between
the positive and the negative coupling constants. It can be expected that a
new phase occurs for a system with such parameters.

2. Formulation

The Hamiltonian for AT model is expressed by

H = Jr I o.o + J2 I .r,ri, + J3 I i oio..i .i,.j, ,^.i"jr t 1 -.i;j'> a' l' -.i:r.iij'> a I a'

in the Ising spin language, where o and t are the Ising spin variables for
each layer. The first and the second summations are taken over all the
nearest neighbor pairs and the third one all the plaquette lattices between
the two layers.

Let us introduce the expectation such as

trl = .o, , \2 = <r> arrd 13 = .o.,
)t1, \2 and 13 are determj-ned from the following equations:

It = {r(1,1,1)+f(r,-1,-1)-f(-1,r,-1)-f (-r,-L,L)}/2,
Xz = { f (1,1, t) -f (1,-1, -1) +f (-1,1, -1) -f (-t,-7,1) }/z ,

I 3 = {f (1,1, I) -f (1, -1,-1) -f (-I,1, -t) +f (-I,-L,L) }/Z

(1)

(2)
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Z = f(1,1,1)+f(1,-I,-1)+f(-1,1,-1)+f(-I,-1,1),
where

f (a,b,c) = exp (aK1z),t+bK2z),2+cK3zl3) , (5)

K. = J.,/kT

and z is the coordi-nation number.
When one of three ),'s is zero, the above equations are reduced to

ritjl = tanh K' (j)'lrti) for )'u = o ' (6)

where i,j and k are one of the permutations of 1,2 and 3. Therefore the
critical behavior is the same as the usual 2-dimensional Ising model, that is,

krt(j) = zJ-(j; for Ir = o

When one coupling constant becomes negative, a two-sublattice spin
structure should be taken into account as follows:

(4)

.A e A .tuI i =. I . 
o--exp (H 

eff) /2, ,
tO,TJ

.A r A tu
t i = ) o--exp (H^F€) /2, ,

to,tj
(7)

e AA .tu

, I .o--r--exp(Hef)/z'
tO,TJ

formulae for ),!, I! ana f! .r. obtained by replacing A with B in eq. (7)

= rr (oAr?+o"rf) **, t.AL!*.Brlr **, tooroL!*o'.Br!) (B)

Ffu

. I ..*p(H"rr) (9)
to,Ti

The superscript A and B are introduced to distinguish the A and B sublattices.

3. Results

^3 -

and the
where

Heff

and

In a general case with all non-
zero J' s we calculated the set of
eqs. (3) by a numerical way. The
result is shown in Fig.1(a) and
Fiq.1(b). Fig.l(a) shows the
critical temperature versus J3
for the case of J1=2 and J2=1.
For relatively smaIl and positive
values of J3 we have two phase
transition points Tgl and Ts2
(T.1<Tq2). Two order parameters
have non-zero values below T.1
and 13 is also non-zero. For
Tql<T<Tc2, only ).1 exists. For
the case of large J3, to the
contrary, we have a similar
state as the previous case except
the fact that only tr3 is non-zero
for TsI<T<Tc2 even though Tg1 and
Tc2 are different from the
previous case.

I2

al-1 ),.=0
I

only
)'fto

only
\tlo

all l.l0

Fiq.1(a) The critical temperature
versus J3 when JI=2 and J2=1.
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Figure 1 (b) shows the critical
temperature versus J3 for the case of
Jl= J2=1. When J3 is relatively 1arge,
the behavior of critical temperature is
similar tb the case (a). However when
J3 is sma1l, we have always only one
critical temperature.

Now we wish to discuss the case of
J3 negative. T.2 keeps the same value
as the critical temperature at J3=Q.
Tg2, however, decreases as the absolute
value of J3 increased. This phenomenon
is d.ue to the competition between the
positive and the negative coupling
constants. We have a possibility of new
phase in the system with such parameters
as TsI vanishes, although it is not
known yet.

In the case (b) such a character as
only one critical temperature j-s
maintained even for J3 negative like
positive side of J3. We cannot expect
a new phase in this case, but we have a
ferromagnetically ordered state even
with energy loss caused by the negative
coupling constant between two
layers. Figure 2 shows the
magnetizatj-on for
tvo cases, (i) ,11=2, J2=I ,
Js=0.5 and (ii) J1--2, J2=!,
Js=3.s or (a).

4. Discussion

The four-spin interaction
gives us an impression that it
is a very weak interaction at
first, because AT model has two
critical temperatures like two
layers are nearly independent.
The higher critical temperature
Tg2 is equal to J1z in the
mol-ecular field approximation, nalthough the lower one is
modified from J2z by the four-
spin interacLion. On the
other hand it is easily
understood by applying a
transformation o+o'T or r,o
that three terms in (1)

J
Ĵ

Fig.1(b) The critical temperature
versus J3 when Jt=J2=1.
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Fig.2 The magnetization for

(i) .rr=2, J2=I , Js=0.5 (dashed
curve) and (ii) J1=2, J2=)-,
Jg=3.s (so1id curve).

M

1.0

exchange their ro11 each other.
ff we consider a two-layered

Ising lattice with two-spin interaction between two layers instead of four-spin
interaction, we have only one critical temperature no matter how much three
parameters are. It is an interesting problem that we consider two-layered
Ising model with usual two-spin interaction, but one layer has ferromagnetic
j-nteraction and the other antiferromagnetic.
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