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Abstract ro

The deuteron elastic scattering from Ni at itOO MeV is. analyzed with the single-
folding potential which is constructed from the nucleon optical potentials at 200
MeV. Two typies of nucleon optical potentials are examined: (a) a standard, Woods-
Saxon type and (b) a non Woods-Saxon type of Schroedinger-eq,uation form of Dirac
phenomenology. The folding potential with (b) gives definitely better agreement with
the experimental data at forward angles up to 15° than the one with (a). The key to
the success of the folding model with (b) seems to be the wine-bottle shaped real
central part which is much more weakly attractive than the latter.

Accurate quantum description of the deuteron (d) elastic scattering is an
important theme of the nuclear reaction theory as the scattering of the simplest
composite projectile. The scattering at lower incident energies, say T^^lOO MeV,
have been analyzed first with a single-folding model in which the deuteron
potential is calculated by a folding of the optical potentials for proton (p) and
neutron (n) into the deuteron ground state density. This model, however, has been
unable to reproduce the experimental data in this energy range. The problem
has been solved by the introduction of the deuteron breadcup process into the model.

As the incident energy T.^ increases, however, the deuteron breakup effect becomes
less important, and the folding model is expected to be valid on the whole. We have
applied the model to an analysis of recent data from Saclay'^) on the deuteron
elastic scattering from ^"^Ca and ' Ni at intermediate energies, Td^=200ai700 MeV. We
report here the result on d+^^Ni scattering at T|j=l+00 MeV.

The single folding potential, U^, is defined by

Ud = <Xdl Up+U„ + vJ Xd> (1)
where Uj^ stands for the neutron optical potential. Up and V^, for the nuclear and
Coulomb parts of the proton optical potential respectively, and Xd 'the deuteron
internal wave function calculated with the Feid soft-core p-n interaction potential.

We neglect the coupling due to V,, between the S- and D-state parts of Xd*
Schroedinger equation including U^j is solved with the relativistic kinematics.

At T|^=iiOO MeV, U^ is constructed from Up and Uj^ for the incident energy of Tp^n=
200 MeV, since each nucleon in the deuteron has the highest probability of having
half the deuteron kinetic energy. As experimental data are not available on the p+
J^Ni elastic scattering at 200 MeV, we take the following procedure to determine the
corresponding optical potentials.

First we search a proton optical potential to fit the data on the p+'''^Ca scatter
ing at 200 MeV. We then extrapolate it with the mass number and the proton number of
the target nucleus to the p+Soui case, keeping the depth and geometrical parameters
constant. This procediire is expected to be reliable, since it works very well at Tp=!
180 MeV, i.e. between the p+^'^Ca scattering at l8l MeV^^ and the p+58Ni scattering
at 178 MeV®' for both of which experimental data are available. The neutron optical
potential is assumed to be the same as the proton one except the charge of the
projectile.

The procedure is used first to determine a standard Woods-Saxon (WS) type proton
optical potential, Up{WS) for p+58Ni at 200 MeV. In the search of the proton optical
potential for the p+ '*OCa scattering at 200 MeV, the starting parameters are taken
from Ref.7. Relativistic effects are treated approximately as in Ref.6. The resulting
parameters are shown in Table.I. The same parameters are used for Up{WS), and Un(WS)
for p+SS^i as mentioned. They are folded to give a deuteron optical potential Uii(WS).

Figiore 1 shows the cross section, a, and the vector- and tensor-analyzing powers,
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Table I. Parameters of the best fit Woods-Saxon type potential for '*°Ca(p,p)'*°Ca
and 5QNi(p,p)58i^i at 200 HeV. All lengths are given in fm and potentials in MeV.

''o ^ 4°
14.21 1.305 0.7101 13.90 1.142 0.7305 2.596 0.9960 0.6650 -X.856 1.019 o.S529

Up(WS)=-tv,f(r^,a^)+iW^f(r,,a,)] (r|°,a|°) (r^°,a^°)]a-L

f Crg, a 1 =1/ Cl+exp C Cr-r^A^''^) /a))

®®Ni(d.dl^®Ni

1  Td = AOOMev'

SO" „cm
^d

Figtire 1.

Cross section and yector-
and tensor-analyzing,
powers in ^ Ni(d,d)^ Ni
at T^=ltOO MeV. The dots
represent the experimental
data^' and the lines are
obtained with the folding

model calculations. The
solid line corresponds to
U^CDirac) and the dashed
line to U(i(WS).

30* cm
9d

and A respectively, for the deuteron scattering from Ni at UOO MeV. The dash-
ed lines^epresent the result of the folding potential, U(j(WS). The experimental
data'^^ are represented by dots. One sees that the dashed lines fail to reproduce
the data, expecially the strong oscillation of Ay and A,^.

To solve the problem, we note that the data on the p+ ̂ ^Ca scattering at 200 MeV
does not uniquely determine the optical potential. In fact, one can find a Dirac

optical model potential^' which gives an equaly good fit to the data as the
WS type potential. The model gives a non-WS type potential

U (Dirac)=Uo -^(U^-U^) -^,(V^-h2Uq) + Uj^^^win "^ f ^2)
p  p P P

in its Schroedinger-equation form

[-2^ + Up(Dirac) + V^--|g—J'j'= 0 (3)
for the function 'P which is related to the upper two components, 'I'y, of the Dirac
wave function through 'J'p=/B(J). In Eqs.(2) and (3), all the notations are the same
as in Ref. 9 : Ep is the proton total energy in the c.m. system, Ug the Lorentz-scalar
potential, U. the time-like component of the Lorentz-vector potential, B=(E+m+Ug-Uo-
Vg)/(E+m) and Ugarwin is the so-called Darwin term. The first and the fourth term in
Eq.(3) give effectively almost the same relativistic kinematical corrections as the
one used in the standard WS analysis.^' The depth and geometrical parameters of Ug
and Uq are searched to fit the experimental data. The starting parameters are taken
from Ref. 9. The resulting parameters are in Table II,and the calculated results are
shown by the solid lines in Fig.2. The same parameters are used for the potential
Up(Dirac) for the p+58Ni scattering at 200 MeV, as mentioned above, and for the
corresponding neutron potential UpCDirac). It shoiild be noted that Up(Dirac) is
sli^tly different from Up(Dirac) by a "Coulomb correction" term, (l/2Ep)V[;(V^+SUg).

For the p+^'^Ca scattering at 200 MeV, the Dirac optical model potential is much
more weakly attractive than the Woods-Saxon type potential. The large difference
between the two potentials represents the ambiguity of the optical potential for the
proton scattering.
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Table II. Parameters of Ug and Us in the best fit Dirac optical model for
''OCa(p,p)^Oca and 58fji(p_p)58fjj^ 200 MeV. All lengths are given in
fm and potentials in MeV.

^0 ^OR "o '^OI °0I "^SR ^SR "s '^SI °SI
344.6 1.016 0.6680 -82.56 1.053 0.6010 -466.3 1.004 0.6949 65.60 1.075 0.5201

U  (Dirac) : Uo=Vof a^j^)+iW(jf (r^^.a^j) , "3=^3^'^SR'^Sr' '^SI>

^OCa(p.pl'°Ca

\  Tp=200MeV 05

■Up (Dirac)
■Up(WS)

Figure 2.

Cross section and vector
analyzing power for
itOca(p,p)^OCa at 200 MeV.
The dots represent the
experimental data <10>.
The solid and dashed lines
are results of the best
fit Dirac optical model
and Woods-Saxon type
optical potentials
respectively.
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In Fig.l, the solid line shows the result of U^(Dirac) which is constructed from
Up(Dirac) and Up(Dirac). It is obvious that U^lDirac) is superior to U^(WS) in the
agreement with the data. Especially, U(j(Dirac) well reproduces the data on Ay. Even
for a, U^(Dirac) gives very good agreement at forward angles up to 15°, while U^(WS)
failes to do so. At angles larger than 15°, however, the agreement of U^(Dirac) with
the data is not sufficient especially for the cross sections;U^(Dirac) does not
reproduce the magnitude, although it reproduces the position of the maxima and the
mimima.

The radial dependence of U^(Dirac) is compared with that of U^(WS) in Fig.3. We
note a large difference between the two potentials especially in the real central
part; U(j{Dirac) has a wine-bottle shaped one with a much weaker attraction than that
of U(j(WS). The effect of this difference can be seen if one performs a calculation
with U.{WS) with its real central part replaced by that of U^(Dirac). The result is
shown in Fig.i^ by a solid line. It shows a much stronger oscillation in Ay and A^y
than the result of U^(WS) shown in Fig.l. Such a large change in Ay and Ayy does not
arise even if one replaces either the imaginary central part or the spin-orbit part
of Ujj^(WS) by the corresponding components of U^(Dirac), as one sees from the dashed
and dotted lines in Fig.h. Thus one sees that the real central part of U^jCDirac) is
essential for the reproduction of the experimentally observed strong oscillation in
Ay and A^. □

In summary, U^(Dirac) is superior to U^(WS) for the deuteron scattering from ^ONi
at UOO MeV at forward angles up to 15°, while the two type of the potential give
almost the same quality of fit to the data on the proton scattering. This indicates
that the deuteron scattering can be a good probe to remove the ambiguity of the
proton optical potential and that the folding potential U^(Dirac) is useful at the
forward angles. The success of U(j(Dirac) stems from its real central part which has
a wine-bottle shape and a weak attraction. At backward angles around 30°, U^(Dirac)
understimates the observed cross section by a factor of 3 as shown in Fig.l. It
should be noted, however, that the absolute magnitude of the cross section there is
down from that at, say, 5° by a factor of iD®. Thus, one expects minor corrections
of that sort of order of magnitude can affect the calculated results. Among them is



Folding Model for Intermediate-Energy Deuteron Scattering

the correction due to the deuteron hreakup effects. An actual calculation with the
coupled-channels method^' shows that the s-wave breakup process enhances the
calculated cross section to half the observed one around 30°. In contrast, the effect
is negligible compared to the main contribution of the folding model at angles up to
15°.

Im(US^)

-50j- 58|Ni(d,d)^®Ni

Td = ̂OOMeV

Re(uf)
■ UjlDiracl

•U(j(WS)

Figure 3.

Radial dependence of the fold
potentials for 58ui(d,d)5oNi
liOO MeV.
The solid line represents
Ud(Dirac) and the dashed line
JJd(ws).

;  A '®Ni(d,d)^®NI

^  Td = 400Mey

,  0* 10' 20* 30* cmFigure 4.

Theoretical cross section and vector- and tensor-
analyzing powers in 5oni(a,d)5%i at T(i=itOO MeV.
The role of the real central part of U(j{Dirac) is
investigated. The solid line represents the result
of U^(WS) with its real central part replaced by
that of U(i(Dirac). The dashed line represents the
result of U(j(WS) but with the imaginary central
part of lI,i(Dirac) and the dotted line corresponds
to U(3;(WS) bub with spin-orbit part of Ud^(Dirac).
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DISCUSSION

SANTOS: The use of a folding model for the deuteron presupposes that we can separate

the center of mass motion from the relative motion. However we do not know how to

make this separation in a fully relativistic way. Therefore the justification for
using the (non-relativistic) folding of Dirac nucleon potentials over the deuteron
wave function is not entirely clear.

MORAVCSIK: I am surprised that you find more difference between the two potentials
at small angles, which correspond to large distances while the two potentials differ
mainly at small distances.

YAHIRO: Two types of folding potentials are different from each other at distances
smaller than 6 fm. The scattering around 15° does not corresponds to the potential

at distances larger than 6 fm, since the transferred momentum of the scattering is
about 2 fm~^ which corresponds to a distance at R = 2it/2 = 3 fm.




