Proc. Sixth Int. Symp. Polar. Phenom. in Nucl. Phys., Osaka, 1985 J. Phys. Soc. Jpn. 55 (1986) Suppl. p. 558-559

1.2 Imaginary Spin-Orbit Potential in the case of 40 Ar (\vec{n}, n_{o}) -Scattering

U. Schneidereit, H. Blank, J. Böttcher, E. Finckh, K. Geißdörfer, R. Lin, K. Stauber, A. Weipert and W. Tornow⁺

Physikalisches Institut der Universität Erlangen-Nürnberg, Physikalisches Institut der Universität Tübingen⁺

Some results of recent experiments with polarised neutrons require an imaginary spin-orbit potential W_{SO} /FLO 81, TOR 82/. Furthermore, in the analysis of ⁹Be (\vec{n}, n_O)-scattering /BYR 84/, the radius of the imaginary spin-orbit potential was extended to larger values in comparison to the real part.

In order to investigate these problems in more detail the ${}^{40}{\rm Ar}$ (\vec{n},n_0) - and the ${}^{40}{\rm Ar}$ (n,n_1) reactions were measured at E_n=11 and 13.5 MeV /SCH 85/, using the Erlangen multidetector neutron facility /BLA 85/ and a special dewar for liquid argon. The experimental results were corrected for finite geometry, multiple scattering and neutron detection efficiency. The analysis has been made using the codes GOMEL /LEE 83/ and ECIS 79 /RAY 83/. For the best fit all parameters were varied simultaneously.

The parameters for the real and imaginary central potentials obtained from a simultaneous fit at both energies are similar to the global parameter set A of Rapaport et al /RAP 79/. However, we got different results for the depth of the absorbtive potential WD=5.5 MeV at En=11 MeV and the diffuseness of the real spin-orbit potential $a_{SO}=0.4-0.5$ fm.

Fig. 1 and 2 show the data at $E_n=11$ MeV and SOM-calculations. The dotted curves correspond to a fit without W_{SO} , the full curves are the results of a separate fit with $r_{WSO}=1.38$ fm and $W_{SO}=1.58\pm0.60$ MeV. Taking this positive depth W_{SO} into account the X² values reduce from 4.7 to 2.8. An additional variation of r_{WSO} away from $r_{WSO}=1.0$ fm improves X² further to 2.0. At 13.5 MeV we obtained $W_{SO}=1.39\pm0.5$ MeV. Coupled channels-calculations with the first 2⁺ state coupled to the groundstate give the same results for the elastic channel.

Fig.1 Differential cross section power for ${}^{40}\text{Ar}$ (n,n_O) at E_n=11MeV. Calculations are best fits: dotted curves without an imaginary spin-orbit potential W_{SO}, full curves with W_{SO}=1.58 MeV.

Fig.2 Analysing power for ${}^{40}\text{Ar}(\vec{n},n_0)$ at $E_n=11$ MeV. Same calculations as in Fig.1.

We thank the Deutsche Forschungsgemeinschaft for financial support.

References

BLA	85	H. Blank et al. to be published
BYR	84	R.C. BYRD et al. Nucl. Phys. A427 (1984) 36
FLO	81	C.E. Floyd et al. Phys.Rev.Lett. 47 (1981) 1042
LEE	83	H. Leeb, private communications 1983
RAP	79	J. Rapaport et al.; Nucl. Phys. A330 (1979) 15
RAY	84	J. Raynal, private communications 1984
SCH	85	U. Schneidereit, Ph.D. thesis Erlangen 1985
TOR	82	W. Tornow et al. Nucl. Phys. A 385 (1982) 373