Proc. Sixth Int. Symp. Polar. Phenom. in Nucl. Phys., Osaka, 1985 J. Phys. Soc. Jpn. 55 (1986) Suppl. p. 576-577

1.11

Elastic Scattering of Polarized Protons on 6 Li. *)

M. Betz, M. Haller, W. Kretschmer, H. Löh, F. Post, A. Rauscher, R. Schmitt, W. Schuster, and D. Vötisch

Physikalisches Institut der Universität Erlangen-Nürnberg, D-8520 Erlangen, Germany

The A = 7 nuclei ⁷Li and ⁷Be have been recently investigated by Hofmann et al.¹⁾ in a refined resonating group calculation on the basis of a multi-structure and multi-channel approach yielding some new resonant structures with J = $1/2^{-}$, $3/2^{-}$ and $5/2^{-}$. The most simple test reactions for these calculations would be the elastic scattering of protons or neutrons on ⁶Li, for which only a small data basis exists up to now²⁻⁴).

In this contribution we report on a measurement of differential cross section and analyzing power for the elastic proton scattering on ⁶Li for $30^{\circ} \le \theta_{Lab} \le 170^{\circ}$ and $4 \text{ MeV} \le E_p \le 10 \text{ MeV}$. Different targets have been used: ⁶LiF on Ni backing and ⁶Li as a sandwich between C and Al. The measurement was performed with the polarized beam produced with the Lamb-shift source and the EN tandem accelerator. The detectors were placed from 30° to 160° in a large target chamber and the beam polarization was continuously monitored with a ⁴He polarimeter.

The analyzing power data are shown in fig. 1, compared with a conventional optical model calculation. These data are very similar to the recently measured n+ 6 Li data from the Duke University⁴), but they show less structure than Hofmann's calculations. A phase shift analysis taking into account the complicated spin structure 1/2 + 1 is in progress.

*) Supported by the Deutsche Forschungsgemeinschaft

References:

1) H.M. Hofmann, T. Mertelmeier, and W. Zahn: Nucl. Phys. A410(1983)208

2) J.A. McCray: Phys. Rev. 130(1963)2034

3) W.D. Harrison and A.B. Whitehead: Phys. Rev. 132(1963)2607

4) R.L. Walter, private communication, Duke University 1985

Fig. 1: Analyzing power of ${}^{6}\text{Li}(\vec{p},p_{0})$ compared with optical model calculations