Proc. Sixth Int. Symp. Polar. Phenom. in Nucl. Phys., Osaka, 1985 J. Phys. Soc. Jpn. 55 (1986) Suppl. p. 594-595

1.21

SCATTERING OF POLARIZED PROTONS FROM Sm AND Cd NUCLEI

R.M.A.L. Petit, W.H.L. Moonen, P.J. van Hall, S.S. Klein, G.J. Nijgh, C.W.A.M. van Overveld, O.J. Poppema.

Cyclotron Laboratory, University of Technology, P.O. Box 513,NL-5600 MB Eindhoven, The Netherlands.

An analysis of the elastic and inelastic scattering of polarized protons from 148,150,152,154 Sm at 20.4 MeV and from 112,114,116 Cd at 22.3 MeV is presented as a part of a larger program to obtain information on nuclear structure of medium-weight and heavy nuclei. The specific interest of the Sm isotopes lies in the transition they show from the spherical (148 Sm) to a deformed (154 Sm) shape 17 . As for the Cd isotopes, the collective character of the positive parity two-phonon states will receive our attention.

Theoretical calculations (CC) were performed with the code ECIS79²). The optical model (OM) parameters were fitted in the generalized OM frame³ including coupling of the g.s. with the strongest excited levels (2⁺-4⁺ for a rotator, and 2⁺-3⁻ for a vibrator). The β strengths were obtained first in a classical way from a simultaneous fit to the three states. A fine readjustment was then performed by fitting in the same CC scheme the OM parameters to the elastic data and thereafter the β 's to the inelastic data. Results of these analyses can be found in Tables I and II. Some typical features did receive our attention:

i) The ¹⁵⁰Sm nucleus is described in the literature as a transitional nucleus, but still analyzed for (p,p') data in the vibrational frame⁴. Our experimental 2⁺ data show (Fig. 1) that the rotational frame should be more appropriate when extracting deformation strengths and OM parameters.

ii) The two-phonon states with negative parity in ¹⁴⁸Sm exhibit a different character, i.e. whereas the 1⁻is better described (Fig. 2) in the first-order anharmonic (with mixing) vibrator model, the description of the 5⁻ needs second-order coupling terms. We have noticed these differences already in the harmonic-vibrator model.

iii) The positive two-phonon states of the Cd isotopes show similar discrepancies, i.e. a second-order vibrator model describes the 4_1^+ better than a first-order, but the second order gives for the 2_2^+ inferior results. Points ii) and iii) make the interpretation in terms of a less probable simultaneous excitation of two bosons for positive parity levels in contrast to easier superposition of phonons for negative parity levels rather difficult.

iv) It should be noted that the difficulty to reproduce the 3^- of the Cd isotopes (out of phase) may be attributed to an inaccurate form factor⁵⁾.

		Vo	r _o	a _o	Ws	ri	a. i	V _{so}	r _{so}	a _{so}	<i>U</i>
148 Sm	V	54.480	1.186	0.746	9.910	1.263	0.725	5.721	1.187	0.593	
150 Sm	V	55.046	1.184	0.725	9.645	1.245	0.776	5.656	1.159	0.588	
150 Sm	R	56.705	1.166	0.738	9.904	1.260	0.766	5.689	1.127	0.622	
152 Sm	R	52.132	1.222	0.691	11.653	1.214	0.697	6.065	1.106	0.515	
154 Sm	R	53.860	1.210	0.667	10.465	1.211	0.822	5.155	0.931	0.489	
¹¹² Cd	V	56.557	1.147	0.693	8.189	1.267	0.751	6.057	1.065	0.602	
¹¹⁴ Cd	V	56.575	1.144	0.710	8.493	1.265	0.756	6.152	1.067	0.640	
¹¹⁶ Cd	V	55.523	1.166	0.676	8.729	1.239	0.762	5.869	1.015	0.695	

Table I. Optical-model parameters obtained in the generalized OM frame in the first-order vibrational (V) or rotational (R) picture.

Supported in part by F.O.M.-Z.W.O.

594

Table II. Deformation strengths for the 2^+ and 3^- states.

		β ₂	β ₃	β ₄			a ar		β ₂	β ₃	
¹⁴⁸ Sm 150Sm 150Sm 152Sm 154Sm	V V R R R	0.120 0.153 0.155 0.225 0.284	0.133 0.115	0.039 0.077 0.055	π	2	¹¹² Cd ¹¹⁴ Cd ¹¹⁶ Cd	V V V	0.176 0.190 0.189	0.163 0.157 0.140	

REFERENCES

- 1) O. Scholten, F. Iachello and A. Arima, Ann. Phys. (N.Y.) 115 (1978) 325.
- 2) J. Raynal, code ECIS, report IAEA-SMR- 918 (1972) 281.
- 3) R.M.A.L. Petit et al., contribution to this conference.
- 4) G. Palla, H.V. Geramb and C. Pegel, Nucl. Phys. A403 (1983) 134.
- P.B. Woollam et al., Nucl. Phys. A179 (1972) 657.
- 5) C.W.A.M. van Overveld, thesis, Eindhoven University of Technology (1985).

