Proc. Sixth Int. Symp. Polar. Phenom. in Nucl. Phys., Osaka, 1985 J. Phys. Soc. Jpn. 55 (1986) Suppl. p. 688-689

1.68

Target Mass Dependence of σ , A_V and A_{VV} in Deuteron Elastic Scattering at 56 MeV

N. Matsuoka, H. Sakai, T. Saito, K. Hosono, M. Kondo, H. Ito, K. Hatanaka*, T. Ichihara*, A. Okihana**, K. Imai*** and K. Nisimura****

> Research Center for Nuclear Physics, Osaka University Ibaraki, Osaka 567, Japan

* The Institute of Physical and Chemical Research, Wako, Saitama 351, Japan
** Department of Physics, Kyoto University of Education, Kyoto 612, Japan
*** Department of Physics, Kyoto University, Kyoto 606, Japan

**** Institute for Nuclear Study, University of Tokyo, Tanashi, Tokyo 188, Japan

We have measured the differential cross section, vector and tensor analyzing powers for the elastic scattering of 56 MeV deuterons on several targets from ¹²C to ²⁰⁸Pb. The experiments were carried out at RCNP, Osaka University. Here a target mass dependence of σ , A_y and A_{yy} is discussed in relation to the nuclear rainbow scattering¹). At forward angles, σ , A_y and A_{yy} show diffractive angular distributions for all target nuclei studied. The experimentally observed characteristic features at backward scattering angles are summarized as follows. 1) For ¹²C, ¹⁶O, ⁴⁰Ca, ⁵²Cr and ⁵⁸Ni nuclei, σ falls off almost exponentially, and both A_y and A_{yy} rise to large positive values close to unity. 2) For ¹⁴⁴Sm and ²⁰⁸Pb nuclei, σ , A_y and A_{yy} show oscillatory patterns in the whole

angular region measured.

3) For 90 Zr and 118 Sn nuclei, σ , A_y and A_{yy} show intermediate behaviors between those observed in the cases 1) and 2).

Fig. 1 shows σ and A_y for $^{4\,0}Ca$, ^{118}Sn and $^{2\,08}Pb$ as examples for the three cases described above.

The features of 1) are similar to those observed for deuteron elastic scattering on ^{58}Ni at 80 MeV. The behaviors of σ , A_y and A_{yy} at 80 MeV have been interpreted as due to the nuclear rainbow scattering in a semiclassical description of the scattering involving only the real central and spin-orbit potentials²). Using the partial cross section σ_m , A_y and A_{yy} are expressed as

$$A_{Y} = \frac{\sigma_{1} - \sigma_{-1}}{\sigma_{1} + \sigma_{0} + \sigma_{-1}}, \qquad A_{YY} = \frac{\sigma_{1} + \sigma_{-1} - 2\sigma_{0}}{\sigma_{1} + \sigma_{0} + \sigma_{-1}}, \qquad (1)$$

where m is the projection of the deuteron spin along the normal to the scattering plane. Due to the spin-orbit potential, the real potential depth and the classically defined maximum deflection angle 0_{max} depends on m. In the angular region beyond θ_{max} , all three cross sections σ_1 , σ_0 and σ_{-1} fall off exponentially, and σ_1 is roughly an order of magnitude greater than σ_0 and σ_{-1} . The dominance of the m = 1 cross section throughout the fall-off region gives both Ay and Ayy large positive values close to unity according to eq. (1) [ref. 2)].

In order to estimate the critical energy, ${\rm E}_{\tt Crit},$ for the occurrence of the nuclear rainbow scattering, the effective potential

$$S(r) = V_{N}(r) + V_{C}(r) + \frac{\hbar^{2}}{2\mu} \frac{\ell(\ell+1)}{r^{2}}$$
(2)

was calculated for each nucleus and the results for ${}^{40}Ca$, ${}^{118}Sn$ and ${}^{208}Pb$ are shown in fig. 1. Here $V_N(r)$ and $V_C(r)$ are the nuclear and Coulomb parts of the real central potential, respectively. The potential parameters used were the best fit ones to the experimental data. $E_{\rm crit}$ is the value of S at the point where dS/dr = 0 in the S curve for which the 'pocket' just disappears as ℓ is increased³). It is seen from fig. 1 that the value of $E_{\rm crit}$ depends upon the nuclear size. In the present case $E_{\rm crit}$ is about 30, 50 and 75 MeV for ${}^{40}Ca$, ${}^{118}Sn$ and ${}^{208}Pb$, respectively. When E > $E_{\rm crit}$, the deflection function O(ℓ) has a negative extremum (nuclear rainbow angle). If the maximum value of |O(l)| is smaller than 180°, we observe the nuclear rainbow scattering. For energies $E < E_{crit}$, there is an l value such that E = S and dS/dr = 0 can be satisfied simultaneously at a radius $r = r_0$. In this case there is neither radial velocity nor acceleration at $r = r_0$ so that the particle continues 'orbiting' or 'spiralling' at that radius. At $E_d = 56$ MeV, $E > E_{crit}$ for nuclei lighter than 5^8 Ni, $E < E_{crit}$ for 144 Sm and 208 Pb and $E \sim E_{crit}$ for 90 Zr and 118 Sn.

Thus the features 1), 2) and 3) described above have close connection with the value of E_{crit} for each nucleus. For lighter nuclei than 58 Ni, the condition $E > E_{crit}$ is realized at $E_d = 56$ MeV and the behaviors of σ , A_y and A_{yy} at backward angles manifest the features of nuclear rainbow scattering. For nuclei heavier than 144 Sm, E is smaller than E_{crit} and the rainbow scattering does not occur. For 90 Zr and 118 Sn, present incident energy is near (or just surmounts) the value of E_{crit} and no clear features of rainbow scattering can be observed.

References

- 1) D.A. Goldberg et al., Phys. Rev. <u>C7</u> (1973) 1938;
- D.A. Goldberg et al., ibid. C10 (1974) 1362
- 2) E.J. Stephenson et al., Nucl. Phys. A359 (1981) 316;
- R.C. Johnson et al., ibid. A371 (1981) 381
- 3) G.R. Satchler, Introduction to nuclear reactions (The Macmillan Press Ltd., London and Basingstoke, 1980) ch.3

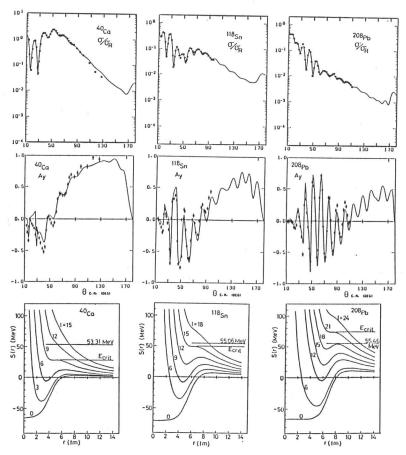


Fig. 1. Differential cross section (Rutherford ratio), vector analyzing power A_y and the effective potential S(r) for 56 MeV deuteron elastic scattering on 40 Ca, 118 Sn and 208 Pb. The curves in σ/σ_R and A_y show best fit results of optical model calculations. S(r) is calculated for various values of l. The critical energy for the occurrence of nuclear rainbow scattering is shown.