Proc. Sixth Int. Symp. Polar. Phenom. in Nucl. Phys., Osaka, 1985 J. Phys. Soc. Jpn. 55 (1986) Suppl. p. 714-715

Spins of States in 35 P and 35 S

S. Khan, Th. Kihm, K.T. Knöpfle, G. Mairle, P. Grabmayr¹, G.J. Wagner¹, V. Bechtold², L. Friedrich²

Max-Planck-Institut für Kernpyhsik, 6900 Heidelberg, FR Germany ¹Physikalisches Institut der Universität, 7400 Tübingen, FR Germany ²Kernforschungszentrum, IAK II, 7500 Karlsruhe, FR Germany

The knowledge on properties of excited states in 35 P and 35 S is scarce¹⁾. 52 MeV vector-polarized deuterons from the Karlsruhe cyclotron were used to study hole states of these nuclei via the (\vec{d} , 3 He) and (\vec{d} ,t) reactions on 36 S. We took a 208 Pb 36 S target on carbon backing with highly enriched 36 S (81.1%).

Fig. 1 gives the results for states observed in the ${}^{36}S(\vec{d}, {}^{3}He){}^{35}P$ reaction; those from the ${}^{36}S(\vec{d},t){}^{35}S$ are not shown for brevity. Pronounced effects of the measured analysing powers which have been demonstrated to be widely stable against changes of target mass and Q-value²⁾ allow the determination of the transferred angular momentum j and hence the spins of final states in ${}^{35}P$ and ${}^{35}S$. The qualitatively correct description of the data by local, zero-range DWBA-calculations confirms the empirically found assignments. As shown previously³⁾, the comparison of energies and spectroscopic factors from simultaneously measured (d, ³He) and (d,t) reactions enables the identification of states in ${}^{35}S$ with T = 5/2, which are the analog states of the parent states observed in ${}^{35}P$. The remainder part of the ${}^{35}S$ spectrum represents the distribution of the T = 3/2 strength. The spectroscopic factors) are sults (excitation energies, spins, parities, isospins and spectroscopic factors) are summarized in tables 1 and 2 for the ${}^{36}S(\vec{d}, {}^{36}He){}^{35}P$ and ${}^{36}S(\vec{d},t){}^{35}S$ reactions, respectively.

Fig. 1. Angular distributions of $\sigma(\theta)$ and $iT_{11}(\theta)$ from the ${}^{36}S(\vec{d}, {}^{3}He)^{35}P$ reactions compared to DWBA calculations.

States in ${}^{35}P$

Besides the transition to the ground state with known spin $I^{\pi} = 1/2^{+}$ we observe four excited states at 2386, 3857, 4665 and 5189 keV. We confirm the 1/2⁺ assignment for the ground state and assign spin and parity $I^{\pi} = 3/2^{+}$ to the weak first excited state at 2386 keV and $I^{\pi} = 5/2^{+}$ for the remaining ones. Compared to proton pick-up from 32 S and 34 S the fragmentation of the 2s, 1d-strength is distinctly reduced. <u>States in 35</u>S

The existing information on 35 S states is limited to E_x < 3.5 MeV; it is based on (n,γ) and $(d,p\gamma)$ work¹⁾ and is confimed by our measurements. We find additional states at 4975, 5779, 6662, 7380 and 7773 keV all with $I^{\pi} = 5/2^{+}$ and T = 3/2. Analog states with T = 5/2 are found at 9135 keV ($I^{\pi} = 1/2^{+}$), 12876, 13654 and 14020 keV (all with $I^{\pi} = 5/2^{+}$).

1) P.M. Endt, C. van der Leun, Nucl. Phys. <u>A310</u> (1978) 127 2) G. Mairle et al., Nucl. Phys. A363 (1981) 413 3) G. Mairle et al., Nucl. Phys. <u>A280</u> (1971) 97

E _x (³⁵ P) (keV)	ıπ	nlj*	c ² s
g.s.	1/2+	^{2s} 1/2	1.63
2386(6)	3/2+	1d _{3/2}	0.31
3857(2)	5/2+	^{1d} 5/2	2.91
4474(21)		1d _{5/2}	<0.2
4665(3)	5/2+	1d _{5/2}	1.06
5189(13)	5/2+	1d _{5/2}	1.38
7520(30)	41	^{1d} 5/2	<0.4

Table 1 and 2: Spectroscopic results from the ${}^{36}S(\vec{d}, {}^{3}He){}^{35}P$ and the ${}^{36}S(\vec{d}, t){}^{35}S$ reactions. *quantum numbers assumed in DWBA calculations

E _x (³⁵ S) (keV)	ıπ	Т	nlj [*]	c ² s
g.s.	3/2+	3/2	1d3/2	3.65
1578(7)	1/2+	3/2	^{2s} 1/2	1.42
1965(35)		3/2	1f _{7/2}	0.42
			^{1d} 5/2	0.40
2745(11)	5/2+	3/2	^{1d} 5/2	0.81
3447(18)	5/2+	3/2	1d5/2	0.72
4975(29)	5/2+	3/2	^{1d} 5/2	0.47
5779(20)	5/2+	3/2	^{1d} 5/2	1.30
6662(19)	5/2+	3/2	1d5/2	0.52
7380(11)	5/2+	3/2	1d _{5/2}	0.74
7773(26)	5/2+	3/2	^{1d} 5/2	0.50
9135(26)	$1/2^{+}$	5/2	^{2s} 1/2	0.31
12876(27)	5/2+	5/2	^{1d} 5/2	0.85
13654(44)	5/2+	5/2	^{1d} 5/2	<0.3
14020(70)	5/2+	5/2	^{1d} 5/2	<0.4