Proc. Sixth Int. Symp. Polar. Phenom. in Nucl. Phys., Osaka, 1985 J. Phys. Soc. Jpn. 55 (1986) Suppl. p. 716-717

1.82 Single-Particle Properties of Protons in the Zirconium Region

G. Mairle, K.T. Knöpfle, Th. Kihm, A. Pfeiffer, G. Seegert, G.J. Wagner⁺, P. Grabmayr⁺

Max-Planck-Institut für Kernphysik, 6900 Heidelberg, FR Germany Physikalisches Institut der Universität, 7400 Tübingen, FR Germany

From a number of single particle transfer reactions with polarized projectiles we know¹⁾ the detailed strength distribution of protons in the $1f_{7/2}$, $1f_{5/2}$, $2p_{3/2}$ and $2p_{1/2}$ shells of nuclei in the mass region of 90Zr. We discuss here global quantities, as are given by the lowest moments of the strength distributions, i.e., spectroscopic strengths, single-particle energies and spreading widths which can be deduced, for example, from proton transfer reactions. The evaluation requires a complete set of data, i.e., the complete spectroscopic strength G⁻ = $\Sigma C^2 S^-$ for pickup and G⁺ = $\Sigma (2I + 1)C^2 S^+$ for stripping must have been observed. In order to minimize the absolute errors of these strengths determined from different experiments, the data were normalized such that they fulfill the requirement G⁻ + G⁺ = 2j + 1 for the different orbits j simultaneously. Following the ideas of Baranger² we calculated single-particle energies E_j(A) of

Following the ideas of Baranger²⁷, we calculated single-particle energies $E_j(A)$ of protons in the orbit with quantum numbers n, l, j of a nucleus A from the first moments E^- , E^+ of the strength distributions according to

$$E_{i}(A) = (E^{-}G^{-} + E^{+}G^{+})/(G^{-} + G^{+}) , \qquad (1)$$

We applied the prescription to single-particle energies of protons in the $1f_{7/2}$, $2p_{3/2}$, $2p_{1/2}$, $1f_{5/2}$ and $1g_{9/2}$ shells in Kr, Sr, Zr and Mo isotopes. When plotted versus mass number A, the energy values $E_j(A)$ exhibit a pattern which can be interpolated linearly. Connecting the data points for isotopes (isotones) we see a constant increase (decrease) of $E_j(A)$ with increasing neutron (proton) number. This linear system can be parametrized by

$$E_{i}(A) = E_{i}(C) + pa + T_{O} b/2$$
 (2)

where A is a nucleus with isospin T_0 and p particles outside a "core" C with $T_0 = 0$. E₁(C), a and b were calculated via linear regression. Experimental values of E₁(A) and the deduced interpolation are presented in fig. 1 for $1g_{0/2}$ protons.

The remarkably simple result can be interpreted in the framework of the Bansal-French model³⁾. If a particle-hole interaction of type $V_{ph} = a + b(\vec{t}_p \cdot \vec{t}_h)$ is assumed, the difference of single-particle energies $E_j(A)$ in a nucleus A = C + p - hwith p particles and h holes with respect to core C, and single-particle energies $E_j(C)$ is given merely by a sum of particle-hole interactions $E_j(A) - E_j(C) = \Sigma V_{ph}$. For proton pickup reactions we obtain

$$E_{i}(A) - E_{i}(C) = p \cdot a + T_{O} \cdot b/2$$
 (3)

(4)

and for proton stripping reactions $E_i(A) - E_i(C) = -h \cdot a + T_0 \cdot b/2$

or, if we introduce a smaller core C' defined by C = C' + p + h

$$E_{i}(A) - E_{i}(C') = p \cdot a + T_{o} \cdot b/2.$$
 (5)

The comparison shows that the same dependence is obtained for pure hole state and for pure particle states; hence the same is true for mixed configurations, where single-particle energies are determined from both pickup and stripping reactions weighted with the respective spectroscopic strengths \overline{G} , \overline{G}^+ .

We conclude that our empirical parametrization of the single-particle energies $E_j(A)$ can be understood in terms of the Bansal-French model, if a constant residual interaction between protons in the orbit j and surrounding nucleons is assumed. This is true for the considered values of j in the Zr region and is also true for $1f_{7/2}$ protons in nuclei with $46 \leq A \leq 92$.

In a next step we combine the information on the 0th and 1st moments of the proton strength distributions, and plot the proton occupation probabilities $\langle p_j \rangle/(2j + 1)$ as a function of $E_j(A)$; see fig. 2 for N = 50 isotones. A fit to the data points with the BCS occupation probability $v_j^2 = (1/2) (1 - [E_j - \lambda]/\epsilon_j)$ with $\epsilon_j = ([E_j - \lambda]^2 + \Lambda^2)^{1/2}$ reveals details of the Fermi surface in these nuclei. The best shell closure among all Kr, Sr, Zr and Mo isotopes is found for ⁸⁸Sr. The values λ , which define the energetic position of the Fermi surface, were used to test the dependence of the spreading widths $\Gamma \downarrow$ on the distance to the Fermi surface, where $\Gamma \downarrow$ is proportional to the second moment M_2 of the strength distribution $\Gamma \downarrow = 2.35 M_2$. For deeply bound $\frac{16}{92}7/2$ protons hole states as observed in the ($\vec{d}, ^3$ He) reaction on $\frac{84,86}{5}$ Kr, $\frac{90,92}{2}$ Zr and Mo the data follow the relation $\Gamma \downarrow = a \cdot (E_j - \lambda)^2$ with $a = 0.06 \text{ MeV}^{-1}$ as predicted by Bertsch⁴ for infinite Fermi systems (fig. 3).

- 1) G. Seegert et al., Journal de Physique 45, C4 (1984) 85
- 2) M. Baranger, Nucl. Phys, A<u>149</u> (1970) 225
- 3) R.K. Bansal, J.B. French, Phys. Lett. 11 (1964) 145; 19 (1965) 223
- 4) G.F. Bertsch et al., Rev. Mod. Phys. <u>55</u> (1983) 287

Fig. 1. Single particle energies of 1g_{9/2} protons.

Fig. 2. Proton occupation probabilities in N = 50 isotones.

Fig. 3. Spreading widths of $1f_{7/2}$ proton hole states.

717